Rumah Peranti teknologi AI Fikirkan LLM sebagai sistem pengendalian, ia mempunyai konteks 'maya' tanpa had, kerja baharu Berkeley telah menerima 1.7k bintang

Fikirkan LLM sebagai sistem pengendalian, ia mempunyai konteks 'maya' tanpa had, kerja baharu Berkeley telah menerima 1.7k bintang

Oct 19, 2023 pm 12:21 PM
teori Model besar pra-latihan

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Dalam beberapa tahun kebelakangan ini, model bahasa besar (LLM) dan seni bina pengubah asasnya telah menjadi asas AI perbualan dan telah melahirkan pelbagai aplikasi pengguna dan perusahaan. Walaupun terdapat kemajuan yang besar, tetingkap konteks panjang tetap yang digunakan oleh LLM sangat mengehadkan kebolehgunaan untuk perbualan panjang atau penaakulan dokumen panjang. Walaupun untuk LLM sumber terbuka yang paling banyak digunakan, panjang input maksimumnya hanya membenarkan sokongan beberapa dozen balasan mesej atau inferens dokumen pendek.

Pada masa yang sama, dihadkan oleh mekanisme perhatian kendiri seni bina pengubah, hanya memanjangkan panjang konteks pengubah juga akan menyebabkan masa pengiraan dan kos memori meningkat secara eksponen, yang menjadikan seni bina konteks panjang baharu sebagai penyelidikan yang mendesak topik.

Walau bagaimanapun, walaupun kita boleh mengatasi cabaran pengiraan penskalaan konteks, penyelidikan terkini menunjukkan bahawa model konteks panjang bergelut untuk menggunakan konteks tambahan dengan berkesan.

Bagaimana untuk menyelesaikannya? Memandangkan sumber besar yang diperlukan untuk melatih SOTA LLM dan pulangan penskalaan konteks yang semakin berkurangan, kami memerlukan teknik alternatif yang menyokong konteks yang panjang dengan segera. Penyelidik di University of California, Berkeley, telah membuat kemajuan baru dalam hal ini.

Dalam artikel ini, penyelidik meneroka cara memberikan ilusi konteks tak terhingga sambil terus menggunakan model konteks tetap. Pendekatan mereka meminjam idea daripada paging memori maya, membolehkan aplikasi memproses set data yang jauh melebihi memori yang tersedia.

Berdasarkan idea ini, penyelidik mengambil kesempatan daripada kemajuan terkini dalam keupayaan memanggil fungsi ejen LLM untuk mereka bentuk sistem LLM yang diilhamkan oleh OS untuk pengurusan konteks maya - MemGPT.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Laman utama kertas: https://memgpt.ai/

alamat arXiv: https://arxiv.org/pdf/2310.08560.pdf

Projek ini telah menjadi sumber terbuka dan telah memperoleh 1.7k bintang di GitHub kuantiti.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Alamat GitHub: https://github.com/cpacker/MemGPT

Tinjauan Keseluruhan Kaedah

Penyelidikan ini mendapat inspirasi daripada pengurusan memori hierarki sistem pengendalian tradisional, dalam sistem pengendalian yang cekap (efficiently windows). maklumat "halaman" masuk dan keluar antara "memori utama") dan storan luaran. MemGPT bertanggungjawab untuk menguruskan aliran kawalan antara memori, modul pemprosesan LLM dan pengguna. Reka bentuk ini membenarkan pengubahsuaian konteks berulang semasa satu tugas, membolehkan ejen menggunakan tetingkap konteks terhadnya dengan lebih cekap.

MemGPT menganggap tetingkap konteks sebagai sumber ingatan yang terhad dan mereka bentuk struktur hierarki untuk LLM yang serupa dengan ingatan hierarki dalam sistem pengendalian tradisional (Patterson et al., 1988). Untuk memberikan panjang konteks yang lebih panjang, penyelidikan ini membolehkan LLM mengurus kandungan yang diletakkan dalam tetingkap konteksnya melalui "LLM OS" - MemGPT. MemGPT membolehkan LLM mendapatkan semula data sejarah berkaitan yang hilang dalam konteks, serupa dengan kerosakan halaman dalam sistem pengendalian. Selain itu, ejen boleh mengubah suai secara berulang kandungan tetingkap konteks tugas tunggal, sama seperti proses boleh berulang kali mengakses memori maya.

MemGPT membolehkan LLM mengendalikan konteks tanpa had apabila tetingkap konteks terhad Komponen MemGPT ditunjukkan dalam Rajah 1 di bawah.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

MemGPT menyelaras pergerakan data antara konteks utama (kandungan dalam tetingkap konteks) dan konteks luaran melalui panggilan fungsi MemGPT kemas kini dan mendapatkan semula secara autonomi berdasarkan konteks semasa.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star
把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Perlu diperhatikan bahawa tetingkap konteks perlu menggunakan token amaran untuk menandakan hadnya, seperti yang ditunjukkan dalam Rajah 3 di bawah:

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Eksperimen dan keputusan

Dalam bahagian eksperimen, penyelidik menilai MemGPT dalam dua domain konteks panjang, iaitu ejen perbualan dan pemprosesan dokumen. Untuk ejen perbualan, mereka melanjutkan set data sembang berbilang sesi sedia ada (Xu et al. (2021)) dan memperkenalkan dua tugas perbualan baharu untuk menilai keupayaan ejen untuk mengekalkan pengetahuan dalam perbualan yang panjang. Untuk analisis dokumen, mereka menanda aras MemGPT pada tugas yang dicadangkan oleh Liu et al (2023a), termasuk menjawab soalan dan mendapatkan semula nilai kunci dokumen panjang. MemGPT untuk ejen perbualan

Yang pertama ialah konsistensi, iaitu ejen harus mengekalkan keselarasan perbualan, dan fakta, rujukan dan peristiwa baharu yang disediakan hendaklah konsisten dengan kenyataan sebelumnya daripada pengguna dan ejen.

    Yang kedua ialah engagement, iaitu ejen harus menggunakan pengetahuan jangka panjang pengguna untuk memperibadikan respon. Merujuk kepada perbualan sebelumnya boleh menjadikan perbualan lebih semula jadi dan menarik.
  • Oleh itu, penyelidik menilai MemGPT berdasarkan dua kriteria ini:
  • Sama ada MemiGPT boleh dieksplorasikan untuk meningkatkan konsistensi perbualan? Bolehkah anda mengingati fakta, petikan, peristiwa yang berkaitan daripada interaksi masa lalu untuk mengekalkan keselarasan?

    MemGPT Adakah mungkin untuk menggunakan memori untuk menjana perbualan yang lebih menarik? Menggabungkan maklumat pengguna jauh secara spontan untuk memperibadikan maklumat?
  • Mengenai set data yang digunakan, penyelidik menggunakan model garis dasar MemGPT dan konteks tetap pada sembang berbilang sesi (MSC) yang dicadangkan oleh Xu et al ) Kembangkan penilaian dan perbandingan.
  • Mula-mula mari kita nilai konsistensi. Para penyelidik memperkenalkan tugas mendapatkan ingatan mendalam (DMR) berdasarkan set data MSC untuk menguji konsistensi ejen perbualan. Dalam DMR, pengguna mengemukakan soalan kepada ejen perbualan, dan soalan itu secara eksplisit merujuk perbualan sebelumnya, dengan jangkaan bahawa julat jawapan akan menjadi sangat sempit. Untuk butiran, sila rujuk contoh dalam Rajah 5 di bawah.

MemGPT menggunakan memori untuk mengekalkan konsistensi. Jadual 2 di bawah menunjukkan perbandingan prestasi MemGPT terhadap model garis dasar memori tetap, termasuk GPT-3.5 dan GPT-4.

Ia boleh dilihat bahawa MemGPT jauh lebih baik daripada GPT-3.5 dan GPT-4 dari segi ketepatan pertimbangan LLM dan skor ROUGE-L. MemGPT boleh menggunakan ingatan ingat untuk menanyakan sejarah perbualan yang lalu untuk menjawab soalan DMR, dan bukannya bergantung pada ringkasan rekursif untuk mengembangkan konteks.
把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Kemudian dalam tugas "Pembuka Perbualan", penyelidik menilai keupayaan ejen untuk mengeluarkan mesej menarik daripada pengetahuan yang terkumpul dalam perbualan sebelumnya dan menyampaikannya kepada kebolehan pengguna.

Para penyelidik menunjukkan markah CSIM bagi ucapan pembukaan MemGPT dalam Jadual 3 di bawah. Keputusan menunjukkan bahawa MemGPT mampu menghasilkan intro yang menarik yang berprestasi baik atau lebih baik daripada intro tulisan tangan manusia. Ia juga diperhatikan bahawa MemGPT cenderung untuk menghasilkan bukaan yang lebih panjang dan meliputi lebih banyak maklumat watak daripada garis dasar manusia. Rajah 6 di bawah adalah contoh. MemGPT untuk analisis dokumen
Untuk menilai keupayaan MemGPT menganalisis dokumen, para penyelidik menanda aras MemGPT dan model garis dasar konteks tetap pada tugas QA dokumen pembaca retriever Liu et al (2023a). 把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star
Hasilnya menunjukkan bahawa MemGPT mampu membuat berbilang panggilan dengan cekap kepada retriever dengan menanyakan storan arkib, membolehkannya menskalakan kepada panjang konteks berkesan yang lebih besar. MemGPT mengambil semula dokumen secara aktif daripada stor arkib dan boleh melayari hasil secara berulang supaya jumlah dokumen yang tersedia untuknya tidak lagi dihadkan oleh bilangan dokumen dalam tetingkap konteks pemproses LLM yang berkenaan.

Disebabkan oleh pengehadan carian persamaan berasaskan benam, tugas QA dokumen menimbulkan cabaran hebat kepada semua kaedah. Penyelidik memerhatikan bahawa MemGPT menghentikan penomboran hasil perangkak sebelum pangkalan data perangkak habis.

Selain itu, terdapat pertukaran dalam kapasiti pengambilan dokumen yang dicipta oleh operasi MemGPT yang lebih kompleks Seperti yang ditunjukkan dalam Rajah 7 di bawah, ketepatan puratanya adalah lebih rendah daripada GPT-4 (lebih tinggi daripada GPT -3.5), tetapi ia boleh dengan mudah Kembangkan ke dokumen yang lebih besar.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k starPara penyelidik juga memperkenalkan tugas baharu berdasarkan perolehan nilai kunci sintetik, iaitu Pengambilan Nilai-Kunci Bersarang Untuk menunjukkan cara MemGPT menyusun maklumat daripada berbilang sumber data.

Daripada keputusan, walaupun GPT-3.5 dan GPT-4 menunjukkan prestasi yang baik pada tugasan nilai kunci asal, mereka menunjukkan prestasi yang lemah pada tugas mendapatkan nilai kunci bersarang. MemGPT tidak terjejas oleh bilangan tahap bersarang dan boleh melakukan carian bersarang dengan berulang kali mengakses pasangan nilai kunci yang disimpan dalam memori utama melalui pertanyaan fungsi.

Prestasi MemGPT pada tugas mendapatkan nilai kunci bersarang menunjukkan keupayaannya untuk melakukan berbilang carian menggunakan gabungan berbilang pertanyaan.

把LLM视作操作系统,它就拥有了无限「虚拟」上下文,伯克利新作已揽1.7k star

Sila rujuk kertas asal untuk butiran lanjut teknikal dan keputusan percubaan.

Atas ialah kandungan terperinci Fikirkan LLM sebagai sistem pengendalian, ia mempunyai konteks 'maya' tanpa had, kerja baharu Berkeley telah menerima 1.7k bintang. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Menerobos sempadan pengesanan kecacatan tradisional, 'Spektrum Kecacatan' mencapai ketepatan ultra tinggi dan pengesanan kecacatan industri semantik yang kaya buat kali pertama. Jul 26, 2024 pm 05:38 PM

Dalam pembuatan moden, pengesanan kecacatan yang tepat bukan sahaja kunci untuk memastikan kualiti produk, tetapi juga teras untuk meningkatkan kecekapan pengeluaran. Walau bagaimanapun, set data pengesanan kecacatan sedia ada selalunya tidak mempunyai ketepatan dan kekayaan semantik yang diperlukan untuk aplikasi praktikal, menyebabkan model tidak dapat mengenal pasti kategori atau lokasi kecacatan tertentu. Untuk menyelesaikan masalah ini, pasukan penyelidik terkemuka yang terdiri daripada Universiti Sains dan Teknologi Hong Kong Guangzhou dan Teknologi Simou telah membangunkan set data "DefectSpectrum" secara inovatif, yang menyediakan anotasi berskala besar yang kaya dengan semantik bagi kecacatan industri. Seperti yang ditunjukkan dalam Jadual 1, berbanding set data industri lain, set data "DefectSpectrum" menyediakan anotasi kecacatan yang paling banyak (5438 sampel kecacatan) dan klasifikasi kecacatan yang paling terperinci (125 kategori kecacatan

Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Model dialog NVIDIA ChatQA telah berkembang kepada versi 2.0, dengan panjang konteks disebut pada 128K Jul 26, 2024 am 08:40 AM

Komuniti LLM terbuka ialah era apabila seratus bunga mekar dan bersaing Anda boleh melihat Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 dan banyak lagi. model yang cemerlang. Walau bagaimanapun, berbanding dengan model besar proprietari yang diwakili oleh GPT-4-Turbo, model terbuka masih mempunyai jurang yang ketara dalam banyak bidang. Selain model umum, beberapa model terbuka yang mengkhusus dalam bidang utama telah dibangunkan, seperti DeepSeek-Coder-V2 untuk pengaturcaraan dan matematik, dan InternVL untuk tugasan bahasa visual.

Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Google AI memenangi pingat perak IMO Mathematical Olympiad, model penaakulan matematik AlphaProof telah dilancarkan dan pembelajaran pengukuhan kembali Jul 26, 2024 pm 02:40 PM

Bagi AI, Olimpik Matematik tidak lagi menjadi masalah. Pada hari Khamis, kecerdasan buatan Google DeepMind menyelesaikan satu kejayaan: menggunakan AI untuk menyelesaikan soalan sebenar IMO Olimpik Matematik Antarabangsa tahun ini, dan ia hanya selangkah lagi untuk memenangi pingat emas. Pertandingan IMO yang baru berakhir minggu lalu mempunyai enam soalan melibatkan algebra, kombinatorik, geometri dan teori nombor. Sistem AI hibrid yang dicadangkan oleh Google mendapat empat soalan dengan betul dan memperoleh 28 mata, mencapai tahap pingat perak. Awal bulan ini, profesor UCLA, Terence Tao baru sahaja mempromosikan Olimpik Matematik AI (Anugerah Kemajuan AIMO) dengan hadiah berjuta-juta dolar Tanpa diduga, tahap penyelesaian masalah AI telah meningkat ke tahap ini sebelum Julai. Lakukan soalan secara serentak pada IMO Perkara yang paling sukar untuk dilakukan dengan betul ialah IMO, yang mempunyai sejarah terpanjang, skala terbesar dan paling negatif

Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Pandangan alam semula jadi: Ujian kecerdasan buatan dalam perubatan berada dalam keadaan huru-hara Apa yang perlu dilakukan? Aug 22, 2024 pm 04:37 PM

Editor |. ScienceAI Berdasarkan data klinikal yang terhad, beratus-ratus algoritma perubatan telah diluluskan. Para saintis sedang membahaskan siapa yang harus menguji alat dan cara terbaik untuk melakukannya. Devin Singh menyaksikan seorang pesakit kanak-kanak di bilik kecemasan mengalami serangan jantung semasa menunggu rawatan untuk masa yang lama, yang mendorongnya untuk meneroka aplikasi AI untuk memendekkan masa menunggu. Menggunakan data triage daripada bilik kecemasan SickKids, Singh dan rakan sekerja membina satu siri model AI untuk menyediakan potensi diagnosis dan mengesyorkan ujian. Satu kajian menunjukkan bahawa model ini boleh mempercepatkan lawatan doktor sebanyak 22.3%, mempercepatkan pemprosesan keputusan hampir 3 jam bagi setiap pesakit yang memerlukan ujian perubatan. Walau bagaimanapun, kejayaan algoritma kecerdasan buatan dalam penyelidikan hanya mengesahkan perkara ini

Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Latihan dengan berjuta-juta data kristal untuk menyelesaikan masalah fasa kristalografi, kaedah pembelajaran mendalam PhAI diterbitkan dalam Sains Aug 08, 2024 pm 09:22 PM

Editor |KX Sehingga hari ini, perincian dan ketepatan struktur yang ditentukan oleh kristalografi, daripada logam ringkas kepada protein membran yang besar, tidak dapat ditandingi oleh mana-mana kaedah lain. Walau bagaimanapun, cabaran terbesar, yang dipanggil masalah fasa, kekal mendapatkan maklumat fasa daripada amplitud yang ditentukan secara eksperimen. Penyelidik di Universiti Copenhagen di Denmark telah membangunkan kaedah pembelajaran mendalam yang dipanggil PhAI untuk menyelesaikan masalah fasa kristal Rangkaian saraf pembelajaran mendalam yang dilatih menggunakan berjuta-juta struktur kristal tiruan dan data pembelauan sintetik yang sepadan boleh menghasilkan peta ketumpatan elektron yang tepat. Kajian menunjukkan bahawa kaedah penyelesaian struktur ab initio berasaskan pembelajaran mendalam ini boleh menyelesaikan masalah fasa pada resolusi hanya 2 Angstrom, yang bersamaan dengan hanya 10% hingga 20% daripada data yang tersedia pada resolusi atom, manakala Pengiraan ab initio tradisional

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Mengenal pasti molekul terbaik secara automatik dan mengurangkan kos sintesis MIT membangunkan rangka kerja algoritma pembuatan keputusan reka bentuk molekul Mengenal pasti molekul terbaik secara automatik dan mengurangkan kos sintesis MIT membangunkan rangka kerja algoritma pembuatan keputusan reka bentuk molekul Jun 22, 2024 am 06:43 AM

Editor |. Penggunaan Ziluo AI dalam memperkemas penemuan dadah semakin meletup. Skrin berbilion molekul calon untuk mereka yang mungkin mempunyai sifat yang diperlukan untuk membangunkan ubat baharu. Terdapat begitu banyak pembolehubah untuk dipertimbangkan, daripada harga material kepada risiko kesilapan, sehingga menimbang kos mensintesis molekul calon terbaik bukanlah tugas yang mudah, walaupun saintis menggunakan AI. Di sini, penyelidik MIT membangunkan SPARROW, rangka kerja algoritma membuat keputusan kuantitatif, untuk mengenal pasti calon molekul terbaik secara automatik, dengan itu meminimumkan kos sintesis sambil memaksimumkan kemungkinan calon mempunyai sifat yang diingini. Algoritma juga menentukan bahan dan langkah eksperimen yang diperlukan untuk mensintesis molekul ini. SPARROW mengambil kira kos mensintesis sekumpulan molekul sekaligus, memandangkan berbilang molekul calon selalunya tersedia

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

See all articles