


Kuasa dwi ChatGPT dan Python: cara membina robot pengesyoran yang diperibadikan
Kuasa dwi ChatGPT dan Python: Cara membina robot cadangan yang diperibadikan
Dalam beberapa tahun kebelakangan ini, pembangunan teknologi kecerdasan buatan telah berkembang pesat, antaranya kemajuan pemprosesan bahasa semula jadi (NLP) dan pembelajaran mesin (ML) telah membantu kami membina cadangan pintar Robot menawarkan peluang besar. Di antara banyak model NLP, ChatGPT OpenAI telah menarik banyak perhatian kerana keupayaan penjanaan dialognya yang sangat baik. Pada masa yang sama, Python, sebagai bahasa pengaturcaraan yang berkuasa dan mudah digunakan, menyediakan alatan dan perpustakaan yang mudah untuk menyokong pembelajaran mesin dan pembangunan sistem pengesyoran. Menggabungkan kuasa dwi ChatGPT dan Python, kami boleh membina robot pengesyoran yang diperibadikan untuk membolehkan pengguna mengalami perkhidmatan pengesyoran yang lebih baik.
Dalam artikel ini, saya akan memperkenalkan kaedah membina bot cadangan yang diperibadikan dan memberikan contoh kod Python khusus.
- Pengumpulan dan prapemprosesan data
Langkah pertama dalam membina robot pengesyoran diperibadikan adalah untuk mengumpul dan mempraproses data yang berkaitan. Data ini boleh menjadi rekod perbualan sejarah pengguna, data penilaian pengguna, maklumat produk, dsb. Data yang dikumpul perlu dibersihkan dan disusun untuk memastikan kualiti dan konsistensi data.
Berikut ialah contoh yang menunjukkan cara menggunakan Python untuk memproses data rekod perbualan pengguna:
# 导入所需的库 import pandas as pd # 读取对话记录数据 data = pd.read_csv('conversation_data.csv') # 数据清洗和整理 # ... # 数据预处理 # ...
- Membina model ChatGPT
Seterusnya, kita perlu menggunakan model ChatGPT untuk penjanaan perbualan. OpenAI menyediakan versi pra-latihan model GPT, dan kami boleh menggunakan perpustakaan yang berkaitan dalam Python untuk memuatkan dan menggunakan model tersebut. Anda boleh memilih untuk memuatkan model pra-latihan atau melatih model itu sendiri agar sesuai dengan tugas tertentu.
Berikut ialah contoh yang menunjukkan cara memuatkan model ChatGPT menggunakan Python:
# 导入所需的库 from transformers import GPT2LMHeadModel, GPT2Tokenizer # 加载ChatGPT模型 model_name = 'gpt2' # 预训练模型的名称 model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) # 对话生成函数 def generate_response(input_text): input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate(input_ids, max_length=100, num_return_sequences=1) response = tokenizer.decode(output[0]) return response # 调用对话生成函数 user_input = "你好,有什么推荐吗?" response = generate_response(user_input) print(response)
- Pemodelan pengguna dan pengesyoran diperibadikan
Untuk mencapai pengesyoran yang diperibadikan, kami perlu membuat model berdasarkan gelagat sejarah dan maklum balas pengguna. Dengan menganalisis rekod perbualan pengguna, data penilaian dan maklumat lain, kami boleh memahami minat dan pilihan pengguna serta memberikan mereka cadangan yang diperibadikan.
Berikut ialah contoh yang menunjukkan cara menggunakan Python untuk membina pemodelan pengguna dan fungsi pengesyoran yang mudah:
# 用户建模和推荐函数 def recommend(user_id): # 基于用户历史对话记录和评分数据进行用户建模 user_model = build_user_model(user_id) # 基于用户模型进行个性化推荐 recommendations = make_recommendations(user_model) return recommendations # 调用推荐函数 user_id = '12345' recommended_items = recommend(user_id) print(recommended_items)
- Pengedaran dan Pengoptimuman
Akhir sekali, kami perlu menggunakan robot pengesyoran yang diperibadikan ke dalam persekitaran aplikasi sebenar dan melaksanakan pengoptimuman berterusan dan penambahbaikan. Anda boleh menggunakan rangka kerja web Python (seperti Flask) untuk mencipta API yang membolehkan robot berinteraksi dengan pengguna. Pada masa yang sama, kami boleh menambah baik algoritma dan model pengesyoran secara berterusan dengan memantau maklum balas pengguna dan menilai kesan pengesyoran.
Butiran khusus penempatan dan pengoptimuman projek berada di luar skop artikel ini, tetapi dengan ekosistem Python yang kaya, kami boleh menyelesaikan tugasan ini dengan mudah.
Ringkasan:
Menggabungkan kuasa dwi ChatGPT dan Python, kami boleh membina bot cadangan yang berkuasa dan diperibadikan. Dengan mengumpul dan pramemproses data, menggunakan model ChatGPT untuk penjanaan dialog, memodelkan pilihan dan gelagat pengguna serta membuat pengesyoran yang diperibadikan berdasarkan model pengguna, kami boleh menyediakan perkhidmatan pengesyoran yang sangat diperibadikan. Pada masa yang sama, Python, sebagai bahasa pengaturcaraan yang fleksibel dan berkuasa, memberikan kami pelbagai alatan dan perpustakaan untuk menyokong pembelajaran mesin dan pembangunan sistem pengesyoran.
Melalui penyelidikan dan penambahbaikan berterusan, kami boleh mengoptimumkan lagi prestasi dan pengalaman pengguna robot pengesyoran yang diperibadikan, dan menyediakan pengguna dengan perkhidmatan pengesyoran yang lebih tepat dan menarik.
Atas ialah kandungan terperinci Kuasa dwi ChatGPT dan Python: cara membina robot pengesyoran yang diperibadikan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Tidak mustahil untuk melihat kata laluan MongoDB secara langsung melalui Navicat kerana ia disimpan sebagai nilai hash. Cara mendapatkan kata laluan yang hilang: 1. Tetapkan semula kata laluan; 2. Periksa fail konfigurasi (mungkin mengandungi nilai hash); 3. Semak Kod (boleh kata laluan Hardcode).

Sebagai profesional data, anda perlu memproses sejumlah besar data dari pelbagai sumber. Ini boleh menimbulkan cabaran kepada pengurusan data dan analisis. Nasib baik, dua perkhidmatan AWS dapat membantu: AWS Glue dan Amazon Athena.

Untuk membaca giliran dari Redis, anda perlu mendapatkan nama giliran, membaca unsur -unsur menggunakan arahan LPOP, dan memproses barisan kosong. Langkah-langkah khusus adalah seperti berikut: Dapatkan nama giliran: Namakannya dengan awalan "giliran:" seperti "giliran: my-queue". Gunakan arahan LPOP: Keluarkan elemen dari kepala barisan dan kembalikan nilainya, seperti LPOP Queue: My-Queue. Memproses Baris kosong: Jika barisan kosong, LPOP mengembalikan nihil, dan anda boleh menyemak sama ada barisan wujud sebelum membaca elemen.

Soalan: Bagaimana untuk melihat versi pelayan Redis? Gunakan alat perintah Redis-cli -version untuk melihat versi pelayan yang disambungkan. Gunakan arahan pelayan INFO untuk melihat versi dalaman pelayan dan perlu menghuraikan dan mengembalikan maklumat. Dalam persekitaran kluster, periksa konsistensi versi setiap nod dan boleh diperiksa secara automatik menggunakan skrip. Gunakan skrip untuk mengautomasikan versi tontonan, seperti menyambung dengan skrip Python dan maklumat versi percetakan.

Langkah -langkah untuk memulakan pelayan Redis termasuk: Pasang Redis mengikut sistem operasi. Mulakan perkhidmatan Redis melalui Redis-server (Linux/macOS) atau redis-server.exe (Windows). Gunakan redis-cli ping (linux/macOS) atau redis-cli.exe ping (windows) perintah untuk memeriksa status perkhidmatan. Gunakan klien Redis, seperti redis-cli, python, atau node.js untuk mengakses pelayan.

Keselamatan kata laluan Navicat bergantung pada gabungan penyulitan simetri, kekuatan kata laluan dan langkah -langkah keselamatan. Langkah -langkah khusus termasuk: menggunakan sambungan SSL (dengan syarat bahawa pelayan pangkalan data menyokong dan mengkonfigurasi sijil dengan betul), mengemas kini Navicat, menggunakan kaedah yang lebih selamat (seperti terowong SSH), menyekat hak akses, dan yang paling penting, tidak pernah merakam kata laluan.
