Rumah pembangunan bahagian belakang Tutorial Python Cara menggunakan IO tak segerak dan coroutine dalam Python untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak

Cara menggunakan IO tak segerak dan coroutine dalam Python untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak

Oct 27, 2023 pm 05:54 PM
python coroutine asynchronousio

Cara menggunakan IO tak segerak dan coroutine dalam Python untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak

Cara menggunakan IO tak segerak dan coroutine dalam Python untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak

Maklumat pada era ini yang pesat , sistem teragih menjadi semakin biasa. Sistem penjadualan tugas berkonkurensi tinggi juga telah menjadi bahagian yang amat diperlukan dalam banyak perusahaan dan organisasi. Artikel ini mengambil Python sebagai contoh untuk memperkenalkan cara menggunakan IO tak segerak dan coroutine untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak.

Sistem penjadualan tugas teragih biasanya termasuk komponen asas berikut:

  1. Penjadual tugas: bertanggungjawab untuk mengagihkan tugas kepada nod pelaksanaan yang berbeza dan memantau status pelaksanaan tugas.
  2. Nod pelaksanaan: Bertanggungjawab untuk menerima tugasan dan melaksanakan logik khusus tugasan.
  3. Baris gilir tugas: digunakan untuk menyimpan tugasan untuk dilaksanakan.
  4. Baris gilir hasil tugas: digunakan untuk menyimpan hasil tugasan yang dilaksanakan.

Untuk mencapai keselarasan tinggi, kami menggunakan IO tak segerak dan coroutine untuk membina sistem penjadualan tugas teragih. Pertama, kami memilih rangka kerja IO tak segerak yang sesuai, seperti asyncio dalam Python. Kemudian, kerjasama antara komponen yang berbeza dicapai dengan mentakrifkan fungsi coroutine. asyncio。然后,通过定义协程函数来实现不同组件之间的协作。

在任务调度器中,我们可以使用协程来处理任务的分发和监控。下面是一个简单的示例代码:

import asyncio

async def task_scheduler(tasks):
    while tasks:
        task = tasks.pop()
        # 将任务发送给执行节点
        result = await execute_task(task)
        # 处理任务的执行结果
        process_result(result)

async def execute_task(task):
    # 在这里执行具体的任务逻辑
    pass

def process_result(result):
    # 在这里处理任务的执行结果
    pass

if __name__ == '__main__':
    tasks = ['task1', 'task2', 'task3']
    loop = asyncio.get_event_loop()
    loop.run_until_complete(task_scheduler(tasks))
Salin selepas log masuk

在执行节点中,我们可以使用协程来接收任务并执行。下面是一个简单的示例代码:

import asyncio

async def task_executor():
    while True:
        task = await receive_task()
        # 执行任务的具体逻辑
        result = await execute_task(task)
        # 将任务执行结果发送回任务结果队列
        await send_result(result)

async def receive_task():
    # 在这里接收任务
    pass

async def execute_task(task):
    # 在这里执行具体的任务逻辑
    pass

async def send_result(result):
    # 在这里发送任务执行结果
    pass

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(task_executor())
Salin selepas log masuk

在以上示例代码中,asyncio提供了asyncawait关键字,用于定义协程函数和在协程中等待其他协程的执行结果。通过将任务调度器和执行节点中的任务处理逻辑定义为协程函数,我们可以利用异步IO和协程的特性,实现高并发的分布式任务调度系统。

除了任务调度器和执行节点,任务队列和任务结果队列也可以使用协程来实现。例如,使用asyncio.Queue

Dalam penjadual tugas, kita boleh menggunakan coroutine untuk mengendalikan pengagihan dan pemantauan tugas. Berikut ialah kod contoh mudah:

rrreee

Dalam nod pelaksanaan, kita boleh menggunakan coroutine untuk menerima tugasan dan melaksanakannya. Berikut ialah kod sampel mudah: #🎜🎜#rrreee#🎜🎜#Dalam kod sampel di atas, asyncio menyediakan async dan menunggu Kata kunci digunakan untuk mentakrifkan fungsi coroutine dan menunggu keputusan pelaksanaan coroutine lain dalam coroutine. Dengan mentakrifkan logik pemprosesan tugas dalam penjadual tugas dan nod pelaksanaan sebagai fungsi coroutine, kita boleh memanfaatkan ciri-ciri IO tak segerak dan coroutine untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak. #🎜🎜##🎜🎜#Selain penjadual tugas dan nod pelaksanaan, baris gilir tugas dan giliran hasil tugasan juga boleh dilaksanakan menggunakan coroutine. Contohnya, menggunakan asyncio.Queue sebagai baris gilir tugas dan baris gilir hasil boleh melaksanakan penjadualan tugas tak segerak dan pemprosesan hasil dengan mudah. #🎜🎜##🎜🎜#Ringkasnya, dengan menggunakan IO tak segerak dan coroutine dalam Python, kami boleh dengan mudah melaksanakan sistem penjadualan tugas teragih yang sangat serentak. Pendekatan ini bukan sahaja meningkatkan prestasi dan kebolehskalaan sistem, tetapi juga menggunakan sumber sistem dengan lebih baik. Sudah tentu, kod sampel di atas hanyalah contoh mudah Dalam sistem penjadualan tugas teragih sebenar, lebih banyak faktor mungkin perlu dipertimbangkan, seperti komunikasi rangkaian dan pengimbangan beban. Tetapi dengan menguasai prinsip asas dan aplikasi IO tak segerak dan coroutine, kita boleh lebih memahami dan membina sistem teragih yang lebih kompleks. #🎜🎜#

Atas ialah kandungan terperinci Cara menggunakan IO tak segerak dan coroutine dalam Python untuk melaksanakan sistem penjadualan tugas teragih yang sangat serentak. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

PHP dan Python: Contoh dan perbandingan kod PHP dan Python: Contoh dan perbandingan kod Apr 15, 2025 am 12:07 AM

PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Python vs JavaScript: Komuniti, Perpustakaan, dan Sumber Apr 15, 2025 am 12:16 AM

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Bagaimana sokongan GPU untuk Pytorch di CentOS Bagaimana sokongan GPU untuk Pytorch di CentOS Apr 14, 2025 pm 06:48 PM

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Penjelasan terperinci mengenai Prinsip Docker Penjelasan terperinci mengenai Prinsip Docker Apr 14, 2025 pm 11:57 PM

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Keserasian Centos Miniopen Keserasian Centos Miniopen Apr 14, 2025 pm 05:45 PM

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Cara Mengendalikan Latihan Pittorch Diagihkan di Centos Apr 14, 2025 pm 06:36 PM

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Cara Memilih Versi PyTorch di CentOS Cara Memilih Versi PyTorch di CentOS Apr 14, 2025 pm 06:51 PM

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

Cara mengemas kini pytorch ke versi terkini di CentOS Cara mengemas kini pytorch ke versi terkini di CentOS Apr 14, 2025 pm 06:15 PM

Mengemas kini Pytorch ke versi terkini di CentOS boleh mengikuti langkah -langkah berikut: Kaedah 1: Mengemas kini PIP dengan PIP: Mula -mula pastikan PIP anda adalah versi terkini, kerana versi lama PIP mungkin tidak dapat memasang versi terkini PYTORCH. pipinstall-upgradepip uninstalls versi lama pytorch (jika dipasang): pemasangan pipuninstalltorchtorchvisionTorchaudio terkini

See all articles