


Menguasai Kepintaran Buatan dan Pemprosesan Bahasa Semulajadi dalam JavaScript
Untuk menguasai kecerdasan buatan dan pemprosesan bahasa semula jadi dalam JavaScript, contoh kod khusus diperlukan
Pemprosesan Bahasa Asli (NLP) dan Kepintaran Buatan (AI) merupakan topik hangat dalam bidang teknologi semasa. Mereka mempunyai pelbagai aplikasi dalam pelbagai bidang, termasuk pengecaman pertuturan, terjemahan mesin, klasifikasi teks, analisis sentimen, dsb. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, JavaScript juga boleh digunakan dalam bidang ini.
Sebelum mempelajari kecerdasan buatan dan pemprosesan bahasa semula jadi dalam JavaScript, anda mesti terlebih dahulu memahami beberapa konsep dan teknik asas. Pemprosesan bahasa semula jadi merujuk kepada proses interaksi komputer dengan bahasa semula jadi manusia. Ia melibatkan keupayaan komputer untuk memahami dan menjana bahasa semula jadi. Kepintaran buatan merujuk kepada keupayaan untuk melengkapkan komputer dengan kecerdasan untuk melaksanakan tugas yang biasanya memerlukan kecerdasan manusia.
Mari kita lihat beberapa contoh kod JavaScript konkrit untuk memahami cara menggunakan kecerdasan buatan dan pemprosesan bahasa semula jadi dalam JavaScript:
- Klasifikasi Teks:
const natural = require('natural'); const classifier = new natural.BayesClassifier(); classifier.addDocument('我喜欢这个产品', 'positive'); classifier.addDocument('这个产品很糟糕', 'negative'); classifier.addDocument('这个产品性价比很高', 'positive'); classifier.train(); const sentence = '这个产品很好'; const classification = classifier.classify(sentence); console.log(classification); // 输出 positive
Kod di atas menggunakan pustaka pemprosesan bahasa semula jadi addDocument
dan kemudian melatih pengelas menggunakan kaedah train
. Akhir sekali, kami memberikan ayat baharu dan mengelaskannya melalui kaedah classify
. natural
,创建了一个文本分类器。我们通过addDocument
方法添加了一些文本和相应的分类,然后使用train
方法训练分类器。最后,我们给出一个新的句子,并通过classify
方法进行分类。
- 情感分析:
const Sentiment = require('sentiment'); const sentiment = new Sentiment(); const sentence = '这个产品很好'; const result = sentiment.analyze(sentence); console.log(result); // 输出 { score: 2, comparative: 0.6666666666666666, tokens: [ '这个', '产品', '很好' ], words: [ '很好' ], positive: [ '很好' ], negative: [], type: 'positive' }
上面的代码使用了情感分析库sentiment
,创建了一个情感分析对象。我们给出了一个句子,并使用analyze
方法进行情感分析。结果包括分数(score)、相对分数(comparative)、分词(tokens)、词语(words)、积极词汇(positive)、消极词汇(negative)和类型(type)等。
除了以上的示例,还有许多其他的应用场景,如语音识别、机器翻译等。在JavaScript中,我们可以使用相应的库,比如Web Speech API
来实现语音识别,使用Google Translate API
- Analisis Sentimen: rrreee🎜Kod di atas menggunakan perpustakaan analisis sentimen
analyse
. Hasilnya termasuk skor, skor perbandingan, token, perkataan, perkataan positif, perkataan negatif, jenis, dll. 🎜🎜Selain contoh di atas, terdapat banyak senario aplikasi lain, seperti pengecaman pertuturan, terjemahan mesin, dll. Dalam JavaScript, kami boleh menggunakan perpustakaan yang sepadan, seperti Web Speech API
untuk melaksanakan pengecaman pertuturan dan Google Terjemah API
untuk melaksanakan terjemahan mesin, dsb. 🎜🎜Ringkasnya, menguasai kecerdasan buatan dan pemprosesan bahasa semula jadi dalam JavaScript memerlukan pengetahuan dan teknologi asas yang berkaitan. Dengan mempelajari dan menggunakan perpustakaan dan alatan JavaScript yang berkaitan, kami boleh menggunakan kecerdasan buatan dan teknologi pemprosesan bahasa semula jadi untuk mencapai pelbagai aplikasi yang menarik dan berguna. Saya percaya bahawa apabila teknologi terus maju, JavaScript akan memainkan peranan yang semakin penting dalam bidang ini. 🎜Atas ialah kandungan terperinci Menguasai Kepintaran Buatan dan Pemprosesan Bahasa Semulajadi dalam JavaScript. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
