Rumah hujung hadapan web tutorial js Menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript

Menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript

Nov 04, 2023 am 08:25 AM
penglihatan komputer pemprosesan imej pengaturcaraan javascript

Menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript

Menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript memerlukan contoh kod khusus

Dengan populariti Internet dan kemajuan teknologi, pemprosesan imej dan penglihatan komputer secara beransur-ansur telah menjadi bidang yang diminati ramai pembangun dan penyelidik. Sebagai bahasa pengaturcaraan yang digunakan secara meluas, JavaScript menyediakan banyak alat dan perpustakaan yang berkuasa yang boleh membantu kami mencapai pemprosesan imej dan tugas berkaitan penglihatan komputer. Artikel ini akan memperkenalkan beberapa perpustakaan JavaScript yang biasa digunakan dan contoh kod khusus untuk membantu pembaca dengan cepat menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript.

Mula-mula, mari perkenalkan beberapa perpustakaan JavaScript yang biasa digunakan. Perpustakaan ini boleh digunakan untuk memproses imej, melaksanakan pengekstrakan ciri imej dan tugas berkaitan penglihatan komputer. Yang lebih biasa ialah:

  1. OpenCV.js: Ini ialah versi JavaScript perpustakaan OpenCV yang menyediakan pelbagai pemprosesan imej dan algoritma penglihatan komputer. Dengan menggunakan OpenCV.js, kami boleh melaksanakan penapisan imej, pengesanan tepi, pembahagian imej dan tugasan lain dengan cepat. Berikut ialah kod sampel untuk skala kelabu imej menggunakan OpenCV.js:
// 导入OpenCV.js库
importScripts('opencv.js');

// 加载图像
const img = cv.imread('path/to/image.jpg');

// 将图像转为灰度图
const grayImg = new cv.Mat();
cv.cvtColor(img, grayImg, cv.COLOR_RGBA2GRAY);

// 显示结果
cv.imshow('canvas', grayImg);

// 释放资源
img.delete();
grayImg.delete();
cv.waitKey();
cv.destroyAllWindows();
Salin selepas log masuk
  1. Tensorflow.js: Ini ialah perpustakaan JavaScript untuk pembelajaran mesin yang mengandungi banyak pemprosesan imej dan fungsi berkaitan penglihatan komputer. Dengan menggunakan Tensorflow.js, kami boleh mencapai tugas seperti pengelasan imej, pengesanan sasaran dan penjanaan imej. Berikut ialah contoh kod untuk klasifikasi imej menggunakan Tensorflow.js:
// 导入Tensorflow.js库
import * as tf from '@tensorflow/tfjs';

// 加载模型
const model = await tf.loadLayersModel('path/to/model.json');

// 加载图像
const img = new Image();
img.src = 'path/to/image.jpg';
await img.onload;

// 将图像转为Tensor
const tensor = tf.browser.fromPixels(img)
    .toFloat()
    .expandDims()
    .div(255.0);

// 进行图像分类
const prediction = model.predict(tensor);

// 显示结果
console.log(prediction);

// 释放资源
tensor.dispose();
prediction.dispose();
Salin selepas log masuk

Selain daripada dua perpustakaan yang dinyatakan di atas, terdapat beberapa perpustakaan JavaScript lain yang juga boleh digunakan untuk melaksanakan pemprosesan imej dan tugas berkaitan penglihatan komputer, seperti Pixi .js, Fabric.js, dsb. Pembaca boleh memilih perpustakaan yang sesuai untuk pembangunan mengikut keperluan mereka sendiri.

Selain menggunakan perpustakaan sedia ada, kami juga boleh menggunakan kod JavaScript asli untuk melaksanakan beberapa tugas pemprosesan imej dan penglihatan komputer yang mudah. Berikut ialah contoh kod yang menggunakan JavaScript asli untuk melaksanakan pengesanan tepi imej:

// 加载图像
const img = new Image();
img.src = 'path/to/image.jpg';
img.onload = function() {
  // 创建canvas对象
  const canvas = document.createElement('canvas');
  const ctx = canvas.getContext('2d');

  // 将图像绘制到canvas上
  ctx.drawImage(img, 0, 0);

  // 获取图像数据
  const imageData = ctx.getImageData(0, 0, img.width, img.height);
  const data = imageData.data;

  // 边缘检测处理
  for(let i = 0; i < data.length; i += 4) {
    const r = data[i];
    const g = data[i + 1];
    const b = data[i + 2];
    const gray = (r + g + b) / 3;

    // 计算边缘灰度值
    const edge = Math.abs(gray - data[i - 4]);

    // 设置边缘像素颜色
    data[i] = data[i + 1] = data[i + 2] = edge;
  }

  // 将处理后的图像数据重新绘制到canvas上
  ctx.putImageData(imageData, 0, 0);
};
Salin selepas log masuk

Kod sampel di atas hanya untuk menunjukkan kepada pembaca pelaksanaan mudah pemprosesan imej dan penglihatan komputer dalam JavaScript yang lebih kompleks dan kod mungkin diperlukan secara sebenar aplikasi. Pembaca boleh mempelajari dan meneroka aplikasi JavaScript dalam pemprosesan imej dan penglihatan komputer secara mendalam mengikut keperluan dan minat mereka sendiri.

Atas ialah kandungan terperinci Menguasai pemprosesan imej dan penglihatan komputer dalam JavaScript. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Jan 23, 2024 pm 01:48 PM

Pengesanan objek adalah tugas penting dalam bidang penglihatan komputer, digunakan untuk mengenal pasti objek dalam imej atau video dan mencari lokasinya. Tugasan ini biasanya dibahagikan kepada dua kategori algoritma, satu peringkat dan dua peringkat, yang berbeza dari segi ketepatan dan keteguhan. Algoritma pengesanan sasaran satu peringkat Algoritma pengesanan sasaran satu peringkat menukarkan pengesanan sasaran kepada masalah klasifikasi Kelebihannya ialah ia pantas dan boleh menyelesaikan pengesanan hanya dalam satu langkah. Walau bagaimanapun, disebabkan terlalu memudahkan, ketepatan biasanya tidak sebaik algoritma pengesanan objek dua peringkat. Algoritma pengesanan sasaran satu peringkat biasa termasuk YOLO, SSD dan FasterR-CNN. Algoritma ini biasanya mengambil keseluruhan imej sebagai input dan menjalankan pengelas untuk mengenal pasti objek sasaran. Tidak seperti algoritma pengesanan sasaran dua peringkat tradisional, mereka tidak perlu menentukan kawasan terlebih dahulu, tetapi meramalkan secara langsung

Bagaimanakah jarak Wasserstein digunakan dalam tugas pemprosesan imej? Bagaimanakah jarak Wasserstein digunakan dalam tugas pemprosesan imej? Jan 23, 2024 am 10:39 AM

Jarak Wasserstein, juga dikenali sebagai Jarak EarthMover (EMD), ialah metrik yang digunakan untuk mengukur perbezaan antara dua taburan kebarangkalian. Berbanding dengan perbezaan tradisional KL atau perbezaan JS, jarak Wasserstein mengambil kira maklumat struktur antara pengedaran dan oleh itu mempamerkan prestasi yang lebih baik dalam banyak tugas pemprosesan imej. Dengan mengira kos pengangkutan minimum antara dua pengedaran, jarak Wasserstein dapat mengukur jumlah kerja minimum yang diperlukan untuk mengubah satu pengedaran kepada yang lain. Metrik ini mampu menangkap perbezaan geometri antara taburan, dengan itu memainkan peranan penting dalam tugas seperti penjanaan imej dan pemindahan gaya. Oleh itu, jarak Wasserstein menjadi konsep

Analisis mendalam tentang prinsip kerja dan ciri-ciri model Pengubah Penglihatan (VIT). Analisis mendalam tentang prinsip kerja dan ciri-ciri model Pengubah Penglihatan (VIT). Jan 23, 2024 am 08:30 AM

VisionTransformer (VIT) ialah model klasifikasi imej berasaskan Transformer yang dicadangkan oleh Google. Tidak seperti model CNN tradisional, VIT mewakili imej sebagai jujukan dan mempelajari struktur imej dengan meramalkan label kelas imej. Untuk mencapai matlamat ini, VIT membahagikan imej input kepada berbilang patch dan menggabungkan piksel dalam setiap patch melalui saluran dan kemudian melakukan unjuran linear untuk mencapai dimensi input yang dikehendaki. Akhir sekali, setiap tampalan diratakan menjadi satu vektor, membentuk urutan input. Melalui mekanisme perhatian kendiri Transformer, VIT dapat menangkap hubungan antara tampalan yang berbeza dan melakukan pengekstrakan ciri dan ramalan klasifikasi yang berkesan. Perwakilan imej bersiri ini ialah

Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Jan 24, 2024 pm 09:57 PM

Pemulihan foto lama ialah kaedah menggunakan teknologi kecerdasan buatan untuk membaiki, menambah baik dan menambah baik foto lama. Menggunakan penglihatan komputer dan algoritma pembelajaran mesin, teknologi ini secara automatik boleh mengenal pasti dan membaiki kerosakan dan kecacatan pada foto lama, menjadikannya kelihatan lebih jelas, lebih semula jadi dan lebih realistik. Prinsip teknikal pemulihan foto lama terutamanya merangkumi aspek-aspek berikut: 1. Penyahnosian dan penambahbaikan imej Apabila memulihkan foto lama, foto itu perlu dibunyikan dan dipertingkatkan terlebih dahulu. Algoritma dan penapis pemprosesan imej, seperti penapisan min, penapisan Gaussian, penapisan dua hala, dsb., boleh digunakan untuk menyelesaikan masalah bunyi dan bintik warna, dengan itu meningkatkan kualiti foto. 2. Pemulihan dan pembaikan imej Dalam foto lama, mungkin terdapat beberapa kecacatan dan kerosakan, seperti calar, retak, pudar, dsb. Masalah ini boleh diselesaikan dengan algoritma pemulihan dan pembaikan imej

Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Jan 23, 2024 am 08:06 AM

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam seperti rangkaian neural convolutional (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat. Kaedah pembinaan semula Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam. 1) Kaedah berasaskan interpolasi Pembinaan semula imej resolusi super berdasarkan interpolasi

Penjelasan terperinci kaedah rujukan jQuery: Panduan permulaan cepat Penjelasan terperinci kaedah rujukan jQuery: Panduan permulaan cepat Feb 27, 2024 pm 06:45 PM

Penjelasan terperinci kaedah rujukan jQuery: Panduan Mula Pantas jQuery ialah perpustakaan JavaScript yang popular yang digunakan secara meluas dalam pembangunan tapak web Ia memudahkan pengaturcaraan JavaScript dan menyediakan pemaju dengan fungsi dan ciri yang kaya. Artikel ini akan memperkenalkan kaedah rujukan jQuery secara terperinci dan menyediakan contoh kod khusus untuk membantu pembaca bermula dengan cepat. Memperkenalkan jQuery Pertama, kita perlu memperkenalkan perpustakaan jQuery ke dalam fail HTML. Ia boleh diperkenalkan melalui pautan CDN atau dimuat turun

Algoritma Ciri Invarian Skala (SIFT). Algoritma Ciri Invarian Skala (SIFT). Jan 22, 2024 pm 05:09 PM

Algoritma Scale Invariant Feature Transform (SIFT) ialah algoritma pengekstrakan ciri yang digunakan dalam bidang pemprosesan imej dan penglihatan komputer. Algoritma ini telah dicadangkan pada tahun 1999 untuk meningkatkan pengecaman objek dan prestasi pemadanan dalam sistem penglihatan komputer. Algoritma SIFT adalah teguh dan tepat dan digunakan secara meluas dalam pengecaman imej, pembinaan semula tiga dimensi, pengesanan sasaran, penjejakan video dan medan lain. Ia mencapai invarian skala dengan mengesan titik utama dalam ruang skala berbilang dan mengekstrak deskriptor ciri tempatan di sekitar titik utama. Langkah-langkah utama algoritma SIFT termasuk pembinaan ruang skala, pengesanan titik utama, kedudukan titik utama, penetapan arah dan penjanaan deskriptor ciri. Melalui langkah-langkah ini, algoritma SIFT boleh mengekstrak ciri yang teguh dan unik, dengan itu mencapai pemprosesan imej yang cekap.

Pengenalan kepada kaedah anotasi imej dan senario aplikasi biasa Pengenalan kepada kaedah anotasi imej dan senario aplikasi biasa Jan 22, 2024 pm 07:57 PM

Dalam bidang pembelajaran mesin dan penglihatan komputer, anotasi imej ialah proses menggunakan anotasi manusia pada set data imej. Kaedah anotasi imej boleh dibahagikan terutamanya kepada dua kategori: anotasi manual dan anotasi automatik. Anotasi manual bermaksud anotasi manusia menganotasi imej melalui operasi manual. Kaedah ini memerlukan anotasi manusia untuk mempunyai pengetahuan dan pengalaman profesional serta dapat mengenal pasti dan menganotasi objek sasaran, adegan atau ciri dalam imej dengan tepat. Kelebihan anotasi manual ialah hasil anotasi boleh dipercayai dan tepat, tetapi kelemahannya ialah ia memakan masa dan kos yang tinggi. Anotasi automatik merujuk kepada kaedah menggunakan program komputer untuk menganotasi imej secara automatik. Kaedah ini menggunakan pembelajaran mesin dan teknologi penglihatan komputer untuk mencapai anotasi automatik oleh model latihan. Kelebihan pelabelan automatik adalah kelajuan pantas dan kos rendah, tetapi kelemahannya ialah keputusan pelabelan mungkin tidak tepat.

See all articles