


Melepaskan kuasa data tidak berstruktur: Panduan untuk menggunakan kecerdasan buatan
Dengan hampir semua industri menegak menjadi digital, sering dikatakan bahawa "data ialah minyak baharu". Walau bagaimanapun, apa yang sering tidak cukup dihargai ialah minyak tidak sesuai untuk menggerakkan mesin kami sehingga ia ditapis dan wujud dalam bentuk yang diingini seperti diesel, petrol, gas asli atau bahan api penerbangan Keadaannya hampir sama dengan data tidak berstruktur .
Dianggarkan bahawa data tidak berstruktur menyumbang kira-kira 80% daripada data yang dijana dan disimpan oleh organisasi di seluruh dunia. Apabila volum data berkembang, perusahaan menghadapi pelbagai cabaran, tidak kurang juga keperluan untuk menyimpan data dengan selamat dan memperoleh cerapan yang boleh diambil tindakan daripadanya pada skala dan kelajuan. Hari ini, proses mengekstrak data yang berkaitan daripada pelbagai sumber tidak berstruktur seperti dokumen teks, imej, fail audio dan video, kemudian menyeragamkannya untuk membuat laporan dan input, dan akhirnya memasukkan penemuan ke dalam proses operasi adalah lebih mudah diucapkan daripada dilakukan.
Dianggarkan penjanaan data dalam industri seperti perkhidmatan kewangan semakin pantas. Dijangkakan menjelang 2025, perusahaan global akan menjana 175ZB (1ZB=1 trilion GB) data, kira-kira 80% daripadanya tidak berstruktur. Bagi kebanyakan perusahaan kontemporari, menukar data ini menjadi risikan perniagaan yang bermakna adalah tugas yang sukar
Kaedah tradisional memproses data tidak berstruktur adalah perlahan, mudah ralat dan mahal. Dengan kemasukan berterusan data tidak berstruktur, sentiasa terdapat risiko kesilapan manusia, pengawasan dan keletihan yang boleh mengatasi walaupun kakitangan yang paling berpengalaman. Alat pengecaman aksara optik (OCR) boleh membantu mendigitalkan data ke tahap tertentu, tetapi alat itu tidak boleh menambah konteks padanya. Kandungan yang ditulis semula: Kaedah tradisional memproses data tidak berstruktur adalah lambat, mudah ralat dan mahal. Dengan kemasukan berterusan data tidak berstruktur, sentiasa terdapat risiko kesilapan manusia, pengawasan dan keletihan yang boleh mengatasi walaupun kakitangan yang paling berpengalaman. Alat pengecaman aksara optik (OCR) boleh membantu mendigitalkan data ke tahap tertentu, tetapi tidak boleh menambah konteks padanya
Malah dalam perusahaan yang menggunakan automasi proses robotik (RPA), walaupun ia mungkin dapat Ia menyusun data dengan memasukkannya dan menambahkannya ke pangkalan data, tetapi ia tidak boleh melakukan perubahan pemformatan, penstrukturan data atau sebarang tugas lain Mentransformasikan data tidak berstruktur kepada cerapan berstruktur dan boleh diambil tindakan boleh membantu perniagaan mengubah pengalaman pelanggan dan memacu kecemerlangan dan pembangunan produk, mengurangkan risiko, menjimatkan kos, dan menyediakan perniagaan dengan kelebihan daya saing. Itulah sebabnya membuka kunci kuasa data tidak berstruktur dengan kecerdasan buatan adalah keperluan mutlak.
Menurut laporan, organisasi yang menggunakan data tidak berstruktur boleh meningkatkan hasil sebanyak 10%-20% dan mengurangkan kos sebanyak 20%-50%. Pasaran global untuk teknologi NLP dijangka mencecah $43.3 bilion menjelang 2025, menunjukkan permintaan yang semakin meningkat untuk menganalisis data teks tidak berstruktur.
Syarikat teknologi besar bertindak pantas mengikut ramalan ini dan membangunkan penyelesaian yang direka untuk menangani masalah tersebut. Sebagai contoh, Amazon melancarkan Texttract, dan Google melancarkan pelbagai API seperti Vision, Document, AutoML, dan NLP. Microsoft juga membolehkan pemprosesan data tidak berstruktur dalam rangkaian perkhidmatan kognitifnya, dan IBM juga menawarkan Datacap. Tidak syak lagi bahawa semua penyelesaian ini adalah baik apabila ia datang untuk mengendalikan sejumlah besar data tidak berstruktur, meneroka dan juga membuat prototaip dengannya.
Walau bagaimanapun, alatan ini adalah agnostik industri dan sering bergelut untuk memberikan cerapan khusus domain yang mencukupi dan tepat. Ralat boleh berlaku disebabkan salah faham istilah industri dan pemahaman yang salah tentang kerumitan atau persamaan antara set data yang berbeza. Oleh itu, walaupun terdapat kesedaran tentang keperluan untuk memanfaatkan data tidak berstruktur, tidak selalu mungkin untuk mencapai hasil yang diinginkan melalui kaedah popular atau didorong secara manual
Untuk merealisasikan potensi penuh data tidak berstruktur, perusahaan perlu untuk melabur dalam alat dan teknik analisis data lanjutan. Memanfaatkan alatan pembelajaran mendalam yang dikuasakan oleh pemprosesan bahasa semula jadi (NLP), kecerdasan buatan (AI) dan pembelajaran mesin (ML) boleh membantu perusahaan memperoleh cerapan khusus domain dan mengenal pasti corak yang tidak boleh dicapai dengan penyelesaian generik
#🎜🎜 #Penyelesaian yang lebih baik ialah bekerjasama dengan penyedia perkhidmatan yang pakar dalam mengendalikan data tidak berstruktur dan mempunyai infrastruktur teknologi dan bakat yang luas untuk mendapatkan cerapan yang tepat. Pendekatan ini bukan sahaja membantu perniagaan memperoleh cerapan yang lebih mendalam secara tetap, malah ia melakukannya tanpa perlu membuat pelaburan dalaman yang ketara dalam infrastruktur, menggaji kakitangan dan membangunkan alatan tersuai. Tidak perlu dikatakan bahawa data tidak berstruktur adalah penting untuk perusahaan moden sebagai cerapan. ia mengandungi boleh mengubah pertumbuhan perniagaan, kecekapan operasi, pengalaman pelanggan dan kos operasi. Walau bagaimanapun, untuk mendapatkan faedah terbaik, perniagaan mesti menyemak pendekatan mereka terhadap analisis dan penstrukturan data. Proses ini boleh dipermudahkan dengan menyepadukan alat kecerdasan buatan termaju dan aliran data. Melalui pendekatan profesional yang diterajui kecerdasan buatan kepada analisis data tidak berstruktur inilah yang akan menentukan jurang antara pemenang masa depan dan yang kalah dalam bidang menegak seperti perkhidmatan kewangan!Atas ialah kandungan terperinci Melepaskan kuasa data tidak berstruktur: Panduan untuk menggunakan kecerdasan buatan. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S
