Bagaimana untuk menapis data dalam panda
Kaedah untuk menapis data panda: 1. Import perpustakaan Pandas 3. Tapis data 5. Kumpulkan dan agregat data; Pengenalan terperinci: 1. Import pustaka Pandas Mula-mula, pastikan pustaka Pandas dipasang Jika ia tidak dipasang, anda boleh menggunakan arahan "pip install panda" untuk memasangnya, dan kemudian anda boleh menggunakan "import panda sebagai. pd" untuk mengimport pustaka Pandas; 2. Baca data , menggunakan pustaka Pandas dan banyak lagi.
Sistem pengendalian tutorial ini: sistem Windows 10, komputer DELL G3.
Pandas ialah perpustakaan analisis data Python yang popular yang menyediakan banyak ciri berkuasa yang membolehkan anda menapis, memproses dan menganalisis data dengan mudah. Berikut ialah beberapa cara biasa untuk menggunakan Pandas untuk menapis data:
1 Import pustaka Pandas
Pertama, pastikan pustaka Pandas dipasang. Jika ia tidak dipasang, anda boleh menggunakan arahan berikut untuk memasangnya:
pip install pandas
Kemudian, import pustaka Pandas:
import pandas as pd
2. Baca data
Gunakan fungsi read_csv() dalam pustaka Pandas untuk membaca fail CSV , dan fungsi read_excel() untuk membaca fail Excel, dsb. Contohnya, baca fail CSV bernama data.csv:
df = pd.read_csv('data.csv')
3. Tapis data
Pandas menyediakan pelbagai kaedah untuk menapis data. Berikut ialah beberapa kaedah biasa:
(1) Penapisan berdasarkan syarat
Gunakan atribut loc dan iloc serta operator logik (seperti &, |, ~, dll.) untuk menapis data. Contohnya, untuk menapis data yang umurnya lebih besar daripada atau bersamaan dengan 18 tahun dan jantinanya perempuan:
df.loc[(df['age'] >= 18) & (df['gender'] == 'female')]
(2) Penapisan berdasarkan teg
Gunakan atribut loc untuk menapis data untuk teg tertentu. Contohnya, tapis data dengan nama keluarga "Zhang":
df.loc[df['last_name'] == '张']
(3) Tapis mengikut julat
Gunakan atribut loc untuk menapis data dalam julat tertentu. Contohnya, tapis data antara umur 18 dan 30:
df.loc[(df['age'] >= 18) & (df['age'] <= 30)]
(4) Tapis mengikut berbilang syarat
Gunakan kaedah pertanyaan untuk menapis data yang memenuhi berbilang syarat. Contohnya, untuk menapis data yang umurnya lebih besar daripada atau sama dengan 18 tahun dan jantinanya ialah perempuan:
df.query('age >= 18 & gender == "female"')
4 Isih data
Gunakan kaedah sort_values() untuk mengisih data. Sebagai contoh, susun mengikut umur dalam tertib menaik:
df.sort_values('age', ascending=True)
5 Kumpulkan dan agregat data
Gunakan kaedah groupby() untuk mengumpulkan data dan gunakan fungsi agregat (seperti jumlah(), min(), count(). , dsb.) untuk mengumpulkan setiap kumpulan Buat pengiraan. Sebagai contoh, hitung purata umur setiap kumpulan jantina:
df.groupby('gender').mean()['age']
Atas ialah kandungan terperinci Bagaimana untuk menapis data dalam panda. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas





Tutorial pemasangan Pandas: Analisis ralat pemasangan biasa dan penyelesaiannya, contoh kod khusus diperlukan Pengenalan: Pandas ialah alat analisis data yang berkuasa yang digunakan secara meluas dalam pembersihan data, pemprosesan data dan visualisasi data, jadi ia sangat dihormati dalam bidang sains data. Walau bagaimanapun, disebabkan oleh konfigurasi persekitaran dan isu pergantungan, anda mungkin menghadapi beberapa kesukaran dan ralat semasa memasang panda. Artikel ini akan memberi anda tutorial pemasangan panda dan menganalisis beberapa ralat pemasangan biasa serta penyelesaiannya. 1. Pasang panda

Cara menggunakan panda untuk membaca fail txt dengan betul memerlukan contoh kod khusus Pandas ialah perpustakaan analisis data Python yang digunakan secara meluas. Ia boleh digunakan untuk memproses pelbagai jenis data, termasuk fail CSV, fail Excel, pangkalan data SQL, dll. Pada masa yang sama, ia juga boleh digunakan untuk membaca fail teks, seperti fail txt. Walau bagaimanapun, apabila membaca fail txt, kadangkala kami menghadapi beberapa masalah, seperti masalah pengekodan, masalah pembatas, dsb. Artikel ini akan memperkenalkan cara membaca txt dengan betul menggunakan panda

Pandas ialah alat analisis data yang berkuasa yang boleh membaca dan memproses pelbagai jenis fail data dengan mudah. Antaranya, fail CSV ialah salah satu daripada format fail data yang paling biasa dan biasa digunakan. Artikel ini akan memperkenalkan cara menggunakan Panda untuk membaca fail CSV dan melakukan analisis data serta memberikan contoh kod khusus. 1. Import perpustakaan yang diperlukan Mula-mula, kita perlu mengimport perpustakaan Pandas dan perpustakaan lain yang berkaitan yang mungkin diperlukan, seperti yang ditunjukkan di bawah: importpandasaspd 2. Baca fail CSV menggunakan Pan

Python boleh memasang panda dengan menggunakan pip, menggunakan conda, daripada kod sumber, dan menggunakan alat pengurusan pakej bersepadu IDE. Pengenalan terperinci: 1. Gunakan pip dan jalankan arahan pemasangan panda pip dalam terminal atau command prompt untuk memasang panda 2. Gunakan conda dan jalankan arahan pemasangan panda di terminal atau command prompt untuk memasang panda; pemasangan dan banyak lagi.

Langkah-langkah untuk memasang panda dalam python: 1. Buka terminal atau command prompt 2. Masukkan arahan "pip install panda" untuk memasang perpustakaan panda; 3. Tunggu pemasangan selesai, dan anda boleh mengimport dan menggunakan perpustakaan panda dalam skrip Python; 4. Gunakan Ia adalah persekitaran maya tertentu Pastikan untuk mengaktifkan persekitaran maya yang sepadan sebelum memasang panda 5. Jika anda menggunakan persekitaran pembangunan bersepadu, anda boleh menambah kod "import panda sebagai pd". import perpustakaan panda.

Alat pemprosesan data: Pandas membaca data daripada pangkalan data SQL dan memerlukan contoh kod khusus Memandangkan jumlah data terus berkembang dan kerumitannya meningkat, pemprosesan data telah menjadi bahagian penting dalam masyarakat moden. Dalam proses pemprosesan data, Pandas telah menjadi salah satu alat pilihan untuk ramai penganalisis dan saintis data. Artikel ini akan memperkenalkan cara menggunakan pustaka Pandas untuk membaca data daripada pangkalan data SQL dan menyediakan beberapa contoh kod khusus. Pandas ialah alat pemprosesan dan analisis data yang berkuasa berdasarkan Python

Petua praktikal untuk membaca fail txt menggunakan panda, contoh kod khusus diperlukan Dalam analisis data dan pemprosesan data, fail txt ialah format data biasa. Menggunakan panda untuk membaca fail txt membolehkan pemprosesan data yang cepat dan mudah. Artikel ini akan memperkenalkan beberapa teknik praktikal untuk membantu anda menggunakan panda dengan lebih baik untuk membaca fail txt, bersama-sama dengan contoh kod tertentu. Baca fail txt dengan pembatas Apabila menggunakan panda untuk membaca fail txt dengan pembatas, anda boleh menggunakan read_c

Rahsia kaedah deduplikasi Pandas: cara yang cepat dan cekap untuk menyahduplikasi data, yang memerlukan contoh kod khusus Dalam proses analisis dan pemprosesan data, duplikasi dalam data sering ditemui. Data pendua mungkin mengelirukan keputusan analisis, jadi penduaan adalah langkah yang sangat penting. Pandas, pustaka pemprosesan data yang berkuasa, menyediakan pelbagai kaedah untuk mencapai penyahduplikasian data Artikel ini akan memperkenalkan beberapa kaedah penyahduplikasian yang biasa digunakan, dan melampirkan contoh kod tertentu. Kes penduaan yang paling biasa berdasarkan satu lajur adalah berdasarkan sama ada nilai lajur tertentu diduakan.
