一个有趣的现象----innodb_io_capacity_MySQL
之前公司客户有出现过一种情况,是使用sysbench 进行压力测试,在测试的过程中发生一个现象,如下所示
下面是客户那里的输出结果:
[1310s] threads: 600, tps: 2176.70, reads: 1087.10, writes: 1089.60, response time: 1076.07ms (95%), errors: 0.00, reconnects: 0.00 [1320s] threads: 600, tps: 2292.10, reads: 1144.30, writes: 1147.80, response time: 805.14ms (95%), errors: 0.00, reconnects: 0.00 [1330s] threads: 600, tps: 2205.90, reads: 1103.30, writes: 1102.60, response time: 969.33ms (95%), errors: 0.00, reconnects: 0.00 [1340s] threads: 600, tps: 2038.20, reads: 1015.80, writes: 1022.40, response time: 920.41ms (95%), errors: 0.00, reconnects: 0.00 [1350s] threads: 600, tps: 2002.90, reads: 998.90, writes: 1004.00, response time: 1096.88ms (95%), errors: 0.00, reconnects: 0.00 [1360s] threads: 600, tps: 2002.90, reads: 1000.10, writes: 1002.80, response time: 1108.77ms (95%), errors: 0.00, reconnects: 0.00 [1370s] threads: 600, tps: 2114.90, reads: 1057.60, writes: 1057.30, response time: 930.94ms (95%), errors: 0.00, reconnects: 0.00 [1380s] threads: 600, tps: 2073.30, reads: 1033.90, writes: 1039.40, response time: 967.59ms (95%), errors: 0.00, reconnects: 0.00 [1390s] threads: 600, tps: 2314.09, reads: 1153.99, writes: 1160.09, response time: 1016.58ms (95%), errors: 0.00, reconnects: 0.00 [1400s] threads: 600, tps: 1850.91, reads: 924.21, writes: 926.71, response time: 1543.45ms (95%), errors: 0.00, reconnects: 0.00 [1410s] threads: 600, tps: 2493.41, reads: 1243.81, writes: 1249.91, response time: 1124.14ms (95%), errors: 0.00, reconnects: 0.00 [1420s] threads: 600, tps: 1628.29, reads: 815.40, writes: 812.60, response time: 1302.12ms (95%), errors: 0.00, reconnects: 0.00 [1430s] threads: 600, tps: 1737.90, reads: 865.30, writes: 872.60, response time: 1128.86ms (95%), errors: 0.00, reconnects: 0.00 [1440s] threads: 600, tps: 1576.90, reads: 787.60, writes: 789.30, response time: 1375.44ms (95%), errors: 0.00, reconnects: 0.00 [1450s] threads: 600, tps: 1773.60, reads: 884.00, writes: 889.60, response time: 1374.20ms (95%), errors: 0.00, reconnects: 0.00 [1460s] threads: 600, tps: 1845.71, reads: 922.71, writes: 923.01, response time: 1252.42ms (95%), errors: 0.00, reconnects: 0.00 [1470s] threads: 600, tps: 2229.28, reads: 1111.89, writes: 1117.39, response time: 1001.47ms (95%), errors: 0.00, reconnects: 0.00 [1480s] threads: 600, tps: 2510.32, reads: 1254.31, writes: 1256.71, response time: 918.75ms (95%), errors: 0.00, reconnects: 0.00 [1490s] threads: 600, tps: 1908.09, reads: 951.79, writes: 955.59, response time: 1148.29ms (95%), errors: 0.00, reconnects: 0.00 [1500s] threads: 600, tps: 2327.93, reads: 1161.71, writes: 1166.41, response time: 1395.34ms (95%), errors: 0.00, reconnects: 0.00 [1510s] threads: 600, tps: 2329.08, reads: 1162.89, writes: 1165.99, response time: 988.08ms (95%), errors: 0.00, reconnects: 0.00 [1520s] threads: 600, tps: 2036.43, reads: 1017.81, writes: 1018.61, response time: 938.21ms (95%), errors: 0.00, reconnects: 0.00 [1530s] threads: 600, tps: 787.59, reads: 393.19, writes: 394.39, response time: 1060.72ms (95%), errors: 0.00, reconnects: 0.00 [1540s] threads: 600, tps: 0.00, reads: 0.00, writes: 0.00, response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00 [2120s] threads: 600, tps: 0.00, reads: 0.00, writes: 0.00, response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00 [2130s] threads: 600, tps: 0.00, reads: 0.00, writes: 0.00, response time: 0.00ms (95%), errors: 0.00, reconnects: 0.00 [2140s] threads: 600, tps: 219.00, reads: 108.30, writes: 110.70, response time: 615414.74ms (95%), errors: 0.00, reconnects: 0.00 [2150s] threads: 600, tps: 2046.80, reads: 1023.90, writes: 1022.90, response time: 1158.65ms (95%), errors: 0.00, reconnects: 0.00 [2160s] threads: 600, tps: 2560.12, reads: 1275.81, writes: 1284.31, response time: 854.55ms (95%), errors: 0.00, reconnects: 0.00 [2170s] threads: 600, tps: 3093.08, reads: 1542.49, writes: 1550.59, response time: 783.97ms (95%), errors: 0.00, reconnects: 0.00 [2180s] threads: 600, tps: 3234.00, reads: 1616.00, writes: 1618.00, response time: 698.42ms (95%), errors: 0.00, reconnects: 0.00 [2190s] threads: 600, tps: 3709.84, reads: 1851.62, writes: 1858.62, response time: 772.09ms (95%), errors: 0.00, reconnects: 0.00 [2200s] threads: 600, tps: 3492.39, reads: 1741.19, writes: 1750.79, response time: 762.67ms (95%), errors: 0.00, reconnects: 0.00 [2210s] threads: 600, tps: 3282.96, reads: 1639.88, writes: 1643.08, response time: 889.00ms (95%), errors: 0.00, reconnects: 0.00 [2220s] threads: 600, tps: 3922.43, reads: 1958.12, writes: 1964.32, response time: 690.32ms (95%), errors: 0.00, reconnects: 0.00 [2230s] threads: 600, tps: 3949.69, reads: 1972.60, writes: 1977.10, response time: 836.58ms (95%), errors: 0.00, reconnects: 0.00 [2240s] threads: 600, tps: 4091.38, reads: 2042.09, writes: 2049.29, response time: 617.39ms (95%), errors: 0.00, reconnects: 0.00
在中途会有一阵TPS为零,为什么会出现上述的情况呢,是因为脏页过多,MySQL 必须先将脏页刷到磁盘才能继续工作.
要想了解脏页与redo log 之间的关系,请看 http://blog.csdn.net/yaoqinglin/article/details/46646267
当脏页刷新的速度不及事务提交的速度,导致脏页过多时,就会触发MySQL 的保护机制,停止写入的操作,只刷盘,直到MySQL认为OK了才好.
配置文件如下
innodb_log_file_size = 1000M innodb_log_files_in_group = 4 innodb_max_dirty_pages_pct = 75 innodb_io_capacity = 200
问题的原因找到了,那怎么解决这个问题呢?
个人觉得应该:最为重要的是 减小 innodb_io_capacity
原理分析:
首先看下图
当Log Pad 占了redo log 的75%以上,MySQL会异步的将Log pad所表示的脏页刷到磁盘中,但是此时MySQL不会停止事务的提交以及写入redo log.
当Log Pad 占了redo log 的90%时,MySQL会停止全部的写入操作,将Log Pad 刷新到磁盘.
造成这种情况的原因呢,自然是刷新的速度比不上事务的提交的速度.但是我们在发生问题之间的监控表示,磁盘的I/O并没有被大量的使用,那么MySQL为甚么不
在发生问题之前使用磁盘I/O开始刷,以减轻发生问题时的压力.
原因是MySQL有一种自适应的刷盘方式,控制整个刷新进程.innodb_adaptive_flushing,innodb_io_capacity, innodb_max_dirty_pages_pct, redo log 大小来判断什么时候
开始刷新脏页.怎么判断呢,大致上MySQL 会根据innodb_io_capacity来判断更新的速度能不能在可控的范围内.如果innodb_io_capacity设置过大,则会造成MySQL高估了
磁盘的能力,导致脏页堆积,就会出现本文所说的问题.如果设置过低,则会出现MySQL低估了磁盘的能力,使得数据库能够单位时间内提交的事务数(tps)降低.
我们的服务器的磁盘是7200rpm,属于比较低级的磁盘,根据MySQL 官方的建议,应该将innodb_io_capacity降低到100.
[root@t1 bin]# ./sg_vpd /dev/sda --page=0xb1 Block device characteristics VPD page (SBC): <strong>Nominal rotation rate: 7200 rpm</strong> Product type: Not specified WABEREQ=0 WACEREQ=0 Nominal form factor: 3.5 inch HAW_ZBC=0 FUAB=0 VBULS=0
官方的建议:
For systems with individual 5400 RPM or 7200 RPM drives, you might lower the value to the former default of 100.
修改之后重新测试,发现不会出现问题.解决的很漂亮有木有.

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel membincangkan menggunakan kunci asing untuk mewakili hubungan dalam pangkalan data, memberi tumpuan kepada amalan terbaik, integriti data, dan perangkap umum untuk dielakkan.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.

Artikel membincangkan mendapatkan MySQL terhadap suntikan SQL dan serangan kekerasan menggunakan pernyataan yang disediakan, pengesahan input, dan dasar kata laluan yang kuat. (159 aksara)
