


Universiti Peking & Perisikan Wangshi mencadangkan model baharu: merapatkan jurang antara pra-latihan tindak balas kimia dan penjanaan molekul bersyarat!
Tindak balas kimia adalah asas reka bentuk ubat dan penyelidikan kimia organik. Terdapat keperluan yang semakin meningkat dalam kalangan komuniti penyelidikan untuk rangka kerja pembelajaran mendalam berskala besar yang boleh menangkap peraturan asas tindak balas kimia dengan berkesan.
Baru-baru ini, pasukan penyelidik dari Universiti Peking dan Wangshi Intelligence mencadangkan kaedah baharu untuk merapatkan jurang antara tugas pra-latihan dan penjanaan molekul berasaskan tindak balas.
Diinspirasikan oleh mekanisme kimia organik, penyelidik telah membangunkan rangka kerja pra-latihan baharu yang membolehkannya menggabungkan bias induktif ke dalam model. Rangka kerja yang dicadangkan ini mencapai hasil terkini apabila melaksanakan tugas hiliran yang mencabar. Dengan memanfaatkan pengetahuan tentang kimia, rangka kerja itu mengatasi batasan model penjanaan molekul semasa yang bergantung pada sebilangan kecil templat tindak balas. Merentasi eksperimen yang meluas, model tersebut menghasilkan struktur seperti ubat yang berkualiti tinggi dan boleh disintesis
Secara keseluruhannya, penyelidikan ini merupakan langkah penting ke arah rangka kerja pembelajaran mendalam berskala besar untuk pelbagai aplikasi berasaskan tindak balas.
Kajian itu bertajuk "Merapatkan jurang antara pralatihan tindak balas kimia dan penjanaan molekul bersyarat dengan model bersatu" dan telah diterbitkan dalam "Nature Machine Intelligence" pada 5 Disember 2023.
Pautan kertas: https://www.nature.com/articles/s42256-023-00764-9
Model pembelajaran mendalam telah digunakan secara meluas dalam banyak bidang penyelidikan saintifik. Rangka kerja pra-latihan memainkan peranan positif dalam penyepaduan tugas baharu yang lancar dan boleh mempercepatkan proses pemodelan, terutamanya apabila data berlabel adalah terhad
Asas reka bentuk ubat dan penyelidikan kimia organik ialah tindak balas kimia. Pada masa ini, penyelidikan dan aplikasi perlombongan data telah membolehkan model pembelajaran mendalam digunakan dalam tindak balas kimia. Berdasarkan data ini, terdapat banyak kajian dipacu data yang menyelidiki pembelajaran perwakilan tindak balas kimia
Pembelajaran perwakilan merujuk kepada pembelajaran secara automatik ciri berguna daripada data dan kemudian menggunakannya untuk pelbagai tugas hiliran. Kaedah sedia ada mengabaikan teori asas kimia organik, mengehadkan prestasinya.
Penjanaan molekul berdasarkan tindak balas kimia
Selain tugas pengelasan tindak balas, penjanaan molekul berdasarkan tindak balas kimia juga merupakan aplikasi penting. Dalam kajian awal, strategi penjanaan molekul langkah demi langkah berasaskan templat sering digunakan
Kaedah berasaskan templat ini sangat bergantung pada blok binaan dan tindak balas yang telah ditetapkan, yang menyempitkan ruang kimia yang boleh diakses. Trend yang sama ditemui dalam bidang ramalan produk tindak balas, di mana kaedah berasaskan templat tidak boleh diekstrapolasi kepada tindak balas yang kompleks masalah ini boleh diselesaikan dengan menggunakan kaedah bebas templat.
Dalam tugas penjanaan molekul berasaskan tindak balas, kaedah bebas templat juga menunjukkan kelebihan generalisasi berbanding kaedah berasaskan templat. Walau bagaimanapun, kaedah penjanaan molekul bebas templat sedia ada hanya boleh menjana molekul berdasarkan perpustakaan reaktan yang telah ditetapkan. Di samping itu, untuk sebatian plumbum atau peringkat pengoptimuman plumbum dalam reka bentuk ubat, adalah lebih berfaedah untuk menggunakan tindak balas kimia sebagai alat penyuntingan untuk mengubah suai struktur tertentu. Pustaka kimia yang terhasil akan menumpukan pada subset ruang kimia yang boleh disintesis dengan langkah tindak balas yang lebih sedikit.
Rangka kerja pembelajaran mendalam yang baharu dan komprehensif untuk tindak balas kimia
Di sini, penyelidik mencadangkan rangka kerja pembelajaran mendalam baharu yang komprehensif untuk tindak balas kimia, dipanggil Uni-RXN. Ia bertujuan untuk menyelesaikan dua tugas asas: pembelajaran perwakilan diselia sendiri dan pemodelan generatif bersyarat.
Rancangan: Komposisi dan kaedah Uni-RXN. (Petikan daripada: kertas)
Berbeza daripada kaedah sedia ada, para penyelidik mencadangkan satu set tugasan penyeliaan sendiri yang direka khusus untuk tindak balas kimia. Tugas-tugas ini termasuk ramalan pusat tindak balas, pasangan tindak balas primer dan subreaktan, dan pasangan hasil tindak balas. Dalam penilaian menyeluruh tentang tugas tindak balas yang mencabar, kaedah Uni-RXN mengatasi teknologi terkini, menunjukkan keupayaannya untuk menangkap pengetahuan domain tentang tindak balas kimia dengan berkesan. Keputusan yang memberangsangkan yang diperolehi membuka jalan untuk aplikasi hiliran yang meluas
Dengan menangkap peraturan kimia secara berkesan, Uni-RXN sangat sesuai untuk tugas penjanaan. Tidak seperti kaedah tradisional yang bergantung pada pemilihan serpihan daripada perpustakaan bahan tindak balas yang telah ditetapkan, Uni-RXN mengambil struktur molekul sebagai keadaan input dan menjana perwakilan bahan tindak balas yang sepadan sambil mengekalkan invarian pilih atur dalam tindak balas. Memanfaatkan kuasa pakej carian persamaan vektor padat, Uni-RXN membolehkan mendapatkan semula bahan tindak balas yang cekap daripada perpustakaan besar bahan tindak balas dan reagen. Selepas itu, model ramalan tindak balas digunakan untuk menjana output produk.
Berbanding kaedah berasaskan templat yang meneroka hanya subset terhad ruang kimia, Uni-RXN mempamerkan prestasi unggul dalam menjana rangkaian yang lebih luas struktur seperti ubat yang boleh disintesis. Ciri ini menjadikannya sangat sesuai untuk penghitungan perpustakaan maya, dan disokong oleh analisis statistik dan kajian kes yang komprehensif.
Kaedah Uni-RXN mempunyai banyak kelebihan dan boleh menjana perwakilan yang kaya untuk tugas pengelasan tindak balas kimia yang mencabar. Berbanding dengan model garis dasar lain, Uni-RXN mencapai ketepatan 58.7% dengan hanya 4 titik data bagi setiap kategori
Kandungan ditulis semula: Ketepatan pengelasan tindak balas kimia ditunjukkan dalam Jadual 1. (Sumber: Kertas)
Model pengubah boleh digunakan untuk membezakan antara data tindak balas kimia yang dioptimumkan dan tidak dioptimumkan. Di samping itu, pengekod juga boleh digunakan dengan mudah untuk penjanaan keadaan struktur
Kandungan yang perlu ditulis semula ialah: Carta menunjukkan prestasi perolehan semula dan berat perhatian Uni-RXN. (Sumber: Kertas)
Hasilnya menyerlahkan sifat menguntungkan molekul yang dihasilkan oleh model yang dicadangkan, yang menjadikannya sangat sesuai untuk tugas penemuan dadah. Model ini boleh menjana lebih banyak molekul dengan sifat seperti ubat dan kebolehsintesis
Ilustrasi: Proses dan prestasi Uni-RXNGen. (Sumber: kertas)
Digabungkan dengan kaedah saringan maya seperti dok molekul, model yang dijana ini boleh mencapai penyelidikan hubungan struktur-aktiviti yang cekap. Ruang kimia seperti dadah sintetik yang besar yang dijana oleh model ini boleh meningkatkan kadar positif sebenar penggunaan semula dadah atau carian molekul hit.
Atas ialah kandungan terperinci Universiti Peking & Perisikan Wangshi mencadangkan model baharu: merapatkan jurang antara pra-latihan tindak balas kimia dan penjanaan molekul bersyarat!. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Hari ini saya ingin berkongsi kerja penyelidikan terbaru dari University of Connecticut yang mencadangkan kaedah untuk menyelaraskan data siri masa dengan model pemprosesan bahasa semula jadi (NLP) yang besar pada ruang terpendam untuk meningkatkan prestasi peramalan siri masa. Kunci kepada kaedah ini ialah menggunakan petunjuk spatial terpendam (prompt) untuk meningkatkan ketepatan ramalan siri masa. Tajuk kertas: S2IP-LLM: SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting Alamat muat turun: https://arxiv.org/pdf/2403.05798v1.pdf 1. Model latar belakang masalah besar

Video terbaru robot Tesla Optimus dikeluarkan, dan ia sudah boleh berfungsi di kilang. Pada kelajuan biasa, ia mengisih bateri (bateri 4680 Tesla) seperti ini: Pegawai itu juga mengeluarkan rupanya pada kelajuan 20x - pada "stesen kerja" kecil, memilih dan memilih dan memilih: Kali ini ia dikeluarkan Salah satu sorotan video itu ialah Optimus menyelesaikan kerja ini di kilang, sepenuhnya secara autonomi, tanpa campur tangan manusia sepanjang proses. Dan dari perspektif Optimus, ia juga boleh mengambil dan meletakkan bateri yang bengkok, memfokuskan pada pembetulan ralat automatik: Berkenaan tangan Optimus, saintis NVIDIA Jim Fan memberikan penilaian yang tinggi: Tangan Optimus adalah robot lima jari di dunia paling cerdik. Tangannya bukan sahaja boleh disentuh

Pengesanan objek ialah masalah yang agak matang dalam sistem pemanduan autonomi, antaranya pengesanan pejalan kaki adalah salah satu algoritma terawal untuk digunakan. Penyelidikan yang sangat komprehensif telah dijalankan dalam kebanyakan kertas kerja. Walau bagaimanapun, persepsi jarak menggunakan kamera fisheye untuk pandangan sekeliling agak kurang dikaji. Disebabkan herotan jejari yang besar, perwakilan kotak sempadan standard sukar dilaksanakan dalam kamera fisheye. Untuk mengurangkan perihalan di atas, kami meneroka kotak sempadan lanjutan, elips dan reka bentuk poligon am ke dalam perwakilan kutub/sudut dan mentakrifkan metrik mIOU pembahagian contoh untuk menganalisis perwakilan ini. Model fisheyeDetNet yang dicadangkan dengan bentuk poligon mengatasi model lain dan pada masa yang sama mencapai 49.5% mAP pada set data kamera fisheye Valeo untuk pemanduan autonomi
