Jadual Kandungan
Kaedah
Rumah Peranti teknologi AI Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Dec 14, 2023 pm 09:49 PM
Model kereta api

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba


  • Pautan kertas: https://browse.arxiv.org/pdf/2211.13976.pdf
  • GitHub: https://github.com/Vanintpan🜎
Sebagai kita semua tahu ,Prestasi rangkaian saraf dalam banyak bergantung pada, kuantiti dan kualiti data latihan, yang menjadikannya sukar untuk mengaplikasikan pembelajaran mendalam secara meluas kepada data kecil, tugasan. Contohnya, dalam senario aplikasi data kecil dalam bidang perubatan dan lain-lain, pengumpulan dan pelabelan set data berskala besar secara manual selalunya memakan masa dan susah payah. Untuk menangani masalah kekurangan data ini dan meminimumkan kos pengumpulan data, kertas kerja ini meneroka paradigma baharu penambahan set data, yang bertujuan untuk menjana data baharu secara automatik untuk mengembangkan set data kecil tugasan sasaran menjadi lebih besar dan lebih bermaklumat set. Set data yang dikembangkan ini dikhususkan untuk meningkatkan prestasi dan keupayaan generalisasi model, dan boleh digunakan untuk melatih struktur rangkaian yang berbeza

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Kerja ini mendapati bahawa hanya menggunakan kaedah sedia ada tidak dapat mengembangkan set data dengan baik. (1) Peningkatan data rawak terutamanya mengubah ciri visual permukaan gambar, tetapi tidak boleh mencipta gambar dengan kandungan objek baharu (teratai dalam gambar di bawah masih sama, tiada teratai baharu dihasilkan), jadi jumlah maklumat yang diperkenalkan adalah terhad. Apa yang lebih serius ialah peningkatan data rawak boleh memangkas kedudukan lesi (perubahan) imej perubatan, mengakibatkan pengurangan maklumat penting sampel dan juga penjanaan data bising. (2) Secara langsung menggunakan model generatif (penyebaran) pra-latihan untuk amplifikasi set data tidak dapat meningkatkan prestasi model dengan baik pada tugas sasaran. Ini kerana data pra-latihan model generatif ini selalunya mempunyai perbezaan pengedaran yang besar dengan data sasaran, yang mengakibatkan jurang taburan dan kategori tertentu antara data yang mereka jana dan tugas sasaran, dan adalah mustahil untuk memastikan bahawa yang dihasilkan sampel mempunyai label yang betul dan berguna untuk latihan model.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Untuk melakukan penambahan set data dengan lebih cekap, penyelidik telah meneroka pembelajaran bersekutu manusia. Apabila manusia mempunyai pengetahuan awal tentang sesuatu objek, mereka boleh membayangkan dengan mudah variasi objek yang berbeza, seperti variasi anjing dalam pelbagai jenis, warna, bentuk atau latar belakang dalam gambar di bawah. Proses pembelajaran imaginatif ini sangat instruktif untuk penambahan set data kerana ia lebih daripada sekadar mengganggu penampilan haiwan dalam gambar, tetapi menggunakan pengetahuan sedia ada yang kaya untuk mencipta gambar varian dengan maklumat baharu

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Walau bagaimanapun, kita tidak boleh. secara langsung memodelkan manusia sebagai model terdahulu untuk imaginasi data. Nasib baik, model generatif baru-baru ini (seperti Stable Diffusion, DALL-E2) telah menunjukkan keupayaan yang berkuasa untuk menyesuaikan pengedaran set data berskala besar, dan boleh menjana imej yang kaya dan realistik. Ini memberi inspirasi kepada kertas kerja ini untuk menggunakan model generatif yang telah dilatih sebagai model terdahulu, memanfaatkan pengetahuan sedia ada yang kukuh untuk melaksanakan perkaitan dan penguatan data yang cekap pada set data kecil.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Berdasarkan idea di atas, karya ini mencadangkan Rangka Kerja Imaginasi Berpandu (GIF) baharu. Kaedah ini secara berkesan boleh meningkatkan prestasi klasifikasi dan keupayaan generalisasi rangkaian saraf dalam pada tugas imej semula jadi dan perubatan, dan sangat mengurangkan kos besar yang disebabkan oleh pengumpulan dan anotasi data manual. Pada masa yang sama, set data yang diperluaskan juga membantu menggalakkan pembelajaran pemindahan model dan mengurangkan masalah ekor panjang.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Seterusnya, mari kita lihat bagaimana paradigma baharu penguatan set data ini direka bentuk.

Kaedah

Cabaran dan piawaian panduan untuk penguatan set data Terdapat dua cabaran utama dalam mereka bentuk kaedah penguatan set data: (1) Bagaimana untuk menjadikan sampel yang dihasilkan mempunyai label kategori yang betul? (2) Bagaimana untuk memastikan sampel yang dihasilkan mengandungi maklumat baharu untuk mempromosikan latihan model? Untuk menangani dua cabaran ini, kerja ini menemui dua kriteria panduan penguatan melalui eksperimen yang meluas: (1) peningkatan maklumat konsisten kategori; (2) peningkatan kepelbagaian sampel;

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Rangka Kerja Kaedah Berdasarkan piawaian panduan amplifikasi yang ditemui, karya ini mencadangkan Rangka Kerja Pembesaran Imaginasi Berpandu (GIF). Untuk setiap sampel benih input x, GIF mula-mula mengekstrak ciri sampel f menggunakan pengekstrak ciri model generatif terdahulu dan melakukan gangguan hingar pada ciri: Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba. Cara paling mudah untuk menetapkan hingar (z, b) ialah menggunakan hingar rawak Gaussian, tetapi ia tidak dapat memastikan sampel yang dihasilkan mempunyai label kelas yang betul dan membawa lebih banyak maklumat. Oleh itu, untuk penguatan set data yang cekap, GIF mengoptimumkan gangguan hingar berdasarkan garis panduan penguatan yang ditemui, iaitu Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba


Piawaian panduan amplifikasi yang digunakan dilaksanakan seperti berikut. Indeks kuantiti maklumat konsisten kelas: Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba; indeks kepelbagaian sampel: Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tibaMemperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba. Dengan memaksimumkan kedua-dua penunjuk ini, GIF boleh mengoptimumkan gangguan bunyi dengan berkesan, dengan itu menghasilkan sampel yang mengekalkan ketekalan kategori dan membawa kandungan maklumat yang lebih besar.

Eksperimen

Kesahan Penguatan GIF mempunyai kesahihan penguatan yang lebih kukuh: GIF-SD meningkatkan ketepatan klasifikasi dengan purata 36.9% pada 3 set data set data semula jadi dan pada purata ketepatan set data perubatan 6 kelas bertambah baik sebanyak 13.5%.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Kecekapan amplifikasi GIF mempunyai kecekapan amplifikasi yang lebih kuat: pada set data Kereta dan DTD, kesan penggunaan GIF-SD untuk penguatan 5 kali ganda malah melebihi kesan penggunaan penambahan data rawak 20 -penguatan lipatan.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Hasil visualisasi Kaedah penambahan data sedia ada tidak boleh menjana kandungan imej baharu, manakala GIF boleh menjana sampel dengan kandungan baharu dengan lebih baik.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Kaedah peningkatan sedia ada boleh mengurangkan lokasi lesi dalam imej perubatan, menyebabkan maklumat sampel berkurangan dan penjanaan hingar, manakala GIF boleh mengekalkan semantik kategorinya dengan lebih baik

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba Berbanding dengan pengumpulan dan anotasi data manual, GIF boleh mengurangkan masa dan kos penguatan set data dengan banyak.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Kepelbagaian data yang diperkuatkanSetelah diperkuat, set data ini boleh digunakan terus untuk melatih pelbagai struktur model rangkaian saraf.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Tingkatkan keupayaan generalisasi model GIF membantu meningkatkan prestasi generalisasi luar pengedaran model (pengertian OOD).

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Melegakan masalah ekor panjang GIF membantu mengurangkan masalah ekor panjang.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Semakan Keselamatan Imej yang dijana GIF adalah selamat dan tidak berbahaya.

Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba

Berdasarkan keputusan eksperimen di atas, kami mempunyai sebab untuk mempercayai bahawa dengan mensimulasikan pembelajaran analogi dan imaginasi manusia, kaedah yang direka dalam kertas ini dapat mengembangkan set data kecil dengan berkesan, dengan itu meningkatkan prestasi rangkaian saraf dalam dalam pelaksanaan senario tugas data kecil dan aplikasi.

Atas ialah kandungan terperinci Memperkenalkan rangka kerja GIF baharu: Mengikuti contoh manusia, paradigma baharu penguatan set data telah tiba. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Sumber terbuka! Di luar ZoeDepth! DepthFM: Anggaran kedalaman monokular yang cepat dan tepat! Sumber terbuka! Di luar ZoeDepth! DepthFM: Anggaran kedalaman monokular yang cepat dan tepat! Apr 03, 2024 pm 12:04 PM

0. Apakah fungsi artikel ini? Kami mencadangkan DepthFM: model anggaran kedalaman monokular generatif yang serba boleh dan pantas. Sebagai tambahan kepada tugas anggaran kedalaman tradisional, DepthFM juga menunjukkan keupayaan terkini dalam tugas hiliran seperti mengecat kedalaman. DepthFM cekap dan boleh mensintesis peta kedalaman dalam beberapa langkah inferens. Mari kita baca karya ini bersama-sama ~ 1. Tajuk maklumat kertas: DepthFM: FastMonocularDepthEstimationwithFlowMatching Pengarang: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo Model MoE sumber terbuka paling berkuasa di dunia ada di sini, dengan keupayaan bahasa Cina setanding dengan GPT-4, dan harganya hanya hampir satu peratus daripada GPT-4-Turbo May 07, 2024 pm 04:13 PM

Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka KAN, yang menggantikan MLP, telah diperluaskan kepada konvolusi oleh projek sumber terbuka Jun 01, 2024 pm 10:03 PM

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Hello, Atlas elektrik! Robot Boston Dynamics hidup semula, gerakan pelik 180 darjah menakutkan Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Apr 09, 2024 am 11:52 AM

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Daya hidup kecerdasan super membangkitkan! Tetapi dengan kedatangan AI yang mengemas kini sendiri, ibu tidak perlu lagi bimbang tentang kesesakan data Daya hidup kecerdasan super membangkitkan! Tetapi dengan kedatangan AI yang mengemas kini sendiri, ibu tidak perlu lagi bimbang tentang kesesakan data Apr 29, 2024 pm 06:55 PM

Saya menangis hingga mati. Dunia sedang membina model besar. Data di Internet tidak mencukupi. Model latihan kelihatan seperti "The Hunger Games", dan penyelidik AI di seluruh dunia bimbang tentang cara memberi makan data ini kepada pemakan yang rakus. Masalah ini amat ketara dalam tugas berbilang modal. Pada masa mereka mengalami kerugian, pasukan pemula dari Jabatan Universiti Renmin China menggunakan model baharu mereka sendiri untuk menjadi yang pertama di China untuk menjadikan "suapan data yang dijana model itu sendiri" menjadi kenyataan. Selain itu, ia merupakan pendekatan serampang dua mata dari segi pemahaman dan sisi penjanaan Kedua-dua pihak boleh menjana data baharu berbilang modal yang berkualiti tinggi dan memberikan maklum balas data kepada model itu sendiri. Apakah model? Awaker 1.0, model berbilang modal besar yang baru sahaja muncul di Forum Zhongguancun. Siapa pasukan itu? Enjin Sophon. Diasaskan oleh Gao Yizhao, pelajar kedoktoran di Sekolah Kecerdasan Buatan Hillhouse Universiti Renmin.

Versi Kuaishou Sora 'Ke Ling' dibuka untuk ujian: menghasilkan video lebih 120-an, memahami fizik dengan lebih baik dan boleh memodelkan pergerakan kompleks dengan tepat Versi Kuaishou Sora 'Ke Ling' dibuka untuk ujian: menghasilkan video lebih 120-an, memahami fizik dengan lebih baik dan boleh memodelkan pergerakan kompleks dengan tepat Jun 11, 2024 am 09:51 AM

Apa? Adakah Zootopia dibawa menjadi realiti oleh AI domestik? Didedahkan bersama-sama dengan video itu ialah model penjanaan video domestik berskala besar baharu yang dipanggil "Keling". Sora menggunakan laluan teknikal yang serupa dan menggabungkan beberapa inovasi teknologi yang dibangunkan sendiri untuk menghasilkan video yang bukan sahaja mempunyai pergerakan yang besar dan munasabah, tetapi juga mensimulasikan ciri-ciri dunia fizikal dan mempunyai keupayaan gabungan konsep dan imaginasi yang kuat. Mengikut data, Keling menyokong penjanaan video ultra panjang sehingga 2 minit pada 30fps, dengan resolusi sehingga 1080p dan menyokong berbilang nisbah aspek. Satu lagi perkara penting ialah Keling bukanlah demo atau demonstrasi hasil video yang dikeluarkan oleh makmal, tetapi aplikasi peringkat produk yang dilancarkan oleh Kuaishou, pemain terkemuka dalam bidang video pendek. Selain itu, tumpuan utama adalah untuk menjadi pragmatik, bukan untuk menulis cek kosong, dan pergi ke dalam talian sebaik sahaja ia dikeluarkan Model besar Ke Ling telah pun dikeluarkan di Kuaiying.

Tentera Udara A.S. mempamerkan jet pejuang AI pertamanya dengan profil tinggi! Menteri secara peribadi menjalankan pandu uji tanpa campur tangan semasa keseluruhan proses, dan 100,000 baris kod telah diuji selama 21 kali. Tentera Udara A.S. mempamerkan jet pejuang AI pertamanya dengan profil tinggi! Menteri secara peribadi menjalankan pandu uji tanpa campur tangan semasa keseluruhan proses, dan 100,000 baris kod telah diuji selama 21 kali. May 07, 2024 pm 05:00 PM

Baru-baru ini, bulatan tentera telah terharu dengan berita: jet pejuang tentera AS kini boleh melengkapkan pertempuran udara automatik sepenuhnya menggunakan AI. Ya, baru-baru ini, jet pejuang AI tentera AS telah didedahkan buat pertama kali, mendedahkan misterinya. Nama penuh pesawat pejuang ini ialah Variable Stability Simulator Test Aircraft (VISTA). Ia diterbangkan sendiri oleh Setiausaha Tentera Udara AS untuk mensimulasikan pertempuran udara satu lawan satu. Pada 2 Mei, Setiausaha Tentera Udara A.S. Frank Kendall berlepas menggunakan X-62AVISTA di Pangkalan Tentera Udara Edwards Ambil perhatian bahawa semasa penerbangan selama satu jam, semua tindakan penerbangan telah diselesaikan secara autonomi oleh AI! Kendall berkata - "Sejak beberapa dekad yang lalu, kami telah memikirkan tentang potensi tanpa had pertempuran udara-ke-udara autonomi, tetapi ia sentiasa kelihatan di luar jangkauan." Namun kini,

See all articles