


Telefon mudah alih menjalankan model kecil Microsoft lebih baik daripada model besar dengan 2.7 bilion parameter
Ketua Pegawai Eksekutif Microsoft Nadella mengumumkan pada persidangan Ignite bulan lepas bahawa model skala kecil Phi-2 akan menjadi sumber terbuka sepenuhnya. Langkah ini akan meningkatkan dengan ketara prestasi penaakulan akal, pemahaman bahasa dan penaakulan logik
Hari ini, Microsoft mengumumkan lebih banyak butiran model Phi-2 dan pangkalan segera teknologi dorongan baharunya. Model dengan hanya 2.7 bilion parameter ini mengatasi prestasi Llama2 7B, Llama2 13B, Mistral 7B dan menutup jurang (atau lebih baik lagi) dengan Llama2 70B pada kebanyakan tugas penaakulan akal, pemahaman bahasa, matematik dan pengekodan.
Pada masa yang sama, Phi-2 bersaiz kecil boleh dijalankan pada peranti mudah alih seperti komputer riba dan telefon bimbit. Nadella berkata bahawa Microsoft sangat gembira untuk berkongsi model bahasa kecil (SLM) terbaik dalam kelasnya dan teknologi segera SOTA dengan pembangun R&D.
Microsoft menerbitkan kertas kerja pada Jun tahun ini yang dipanggil "Just a Textbook" yang menggunakan data "kualiti buku teks" yang mengandungi hanya penanda 7B untuk melatih model dengan parameter 1.3B, iaitu phi-1. Walaupun mempunyai set data dan saiz model yang tertib magnitud lebih kecil daripada pesaing, phi-1 mencapai kadar lulus kali pertama sebanyak 50.6% dalam HumanEval dan ketepatan 55.5% dalam MBPP. phi-1 membuktikan bahawa walaupun "data kecil" berkualiti tinggi boleh menjadikan model itu mempunyai prestasi yang baik
Microsoft kemudiannya menerbitkan "Just a Textbook II: Phi-1.5 Technical Report" pada bulan September, yang memberi tumpuan kepada kualiti tinggi "data kecil" disiasat selanjutnya. Artikel itu mencadangkan Phi-1.5, yang sesuai untuk Q&A Q&A, pengekodan dan senario lain, dan boleh mencapai skala 1.3 bilion
Kini, Phi-2 dengan 2.7 bilion parameter sekali lagi menggunakan "badan kecil" untuk menyediakan penaakulan yang sangat baik dan keupayaan pemahaman Bahasa, menunjukkan prestasi SOTA dalam model bahasa asas di bawah 13 bilion parameter. Terima kasih kepada inovasi dalam penskalaan model dan pengurusan data latihan, Phi-2 sepadan atau melebihi model 25 kali ganda saiznya sendiri pada penanda aras yang kompleks.
Microsoft mengatakan bahawa Phi-2 akan menjadi model ideal untuk penyelidik menjalankan penerokaan kebolehtafsiran, penambahbaikan keselamatan atau eksperimen penalaan halus untuk pelbagai tugas. Microsoft telah menyediakan Phi-2 dalam katalog model Azure AI Studio untuk memudahkan pembangunan model bahasa.
Sorotan Utama Phi-2
Peningkatan saiz model bahasa kepada ratusan bilion parameter sememangnya telah mengeluarkan banyak keupayaan baharu dan mentakrifkan semula landskap pemprosesan bahasa semula jadi. Tetapi persoalan tetap ada: adakah keupayaan baharu ini juga boleh dicapai pada model skala yang lebih kecil melalui pemilihan strategi latihan (seperti pemilihan data)?
Penyelesaian yang disediakan oleh Microsoft ialah menggunakan siri model Phi untuk mencapai prestasi yang serupa dengan model besar dengan melatih model bahasa kecil. Phi-2 melanggar peraturan penskalaan model bahasa tradisional dalam dua aspek
Pertama, kualiti data latihan memainkan peranan penting dalam prestasi model. Microsoft mengambil pemahaman ini secara melampau dengan memfokuskan pada data "kualiti buku teks". Data latihan mereka terdiri daripada set data komprehensif yang dicipta khas yang mengajar model pengetahuan akal dan penaakulan, seperti sains, aktiviti harian dan psikologi. Selain itu, mereka mengembangkan lagi korpus latihan mereka dengan data web yang dipilih dengan teliti yang disaring untuk nilai pendidikan dan kualiti kandungan
Kedua, Microsoft menggunakan teknologi inovatif untuk skala dari Phi-1.5 dengan 1.3 bilion parameter Pada mulanya, pengetahuan telah dibenamkan secara beransur-ansur ke dalam Phi-2 dengan 2.7 bilion parameter. Pemindahan pengetahuan berskala ini mempercepatkan penumpuan latihan dan meningkatkan markah penanda aras Phi-2 dengan ketara.
Berikut ialah graf perbandingan antara Phi-2 dan Phi-1.5, kecuali BBH (3-shot CoT) dan MMLU (5-shot), semua tugasan lain dinilai menggunakan 0-shot
Butiran latihan
Phi-2 ialah model berasaskan Transformer yang matlamatnya adalah untuk meramal perkataan seterusnya. Ia dilatih pada set data sintetik dan rangkaian, menggunakan 96 GPU A100, dan mengambil masa 14 hari
Phi-2 ialah model asas tanpa Penjajaran Pembelajaran Pengukuhan dengan Maklum Balas Manusia (RLHF) dan tiada penalaan halus arahan. Walaupun begitu, Phi-2 masih menunjukkan prestasi yang lebih baik dari segi ketoksikan dan berat sebelah berbanding model sumber terbuka sedia ada yang ditala, seperti yang ditunjukkan dalam Rajah 3 di bawah.
. )Penaakulan akal (PIQA, WinoGrande, ARC mudah dan mencabar, SIQA),
Pemahaman bahasa (HellaSwag, OpenBookQA, MMLU (5-shot), SQuADv2 (2-shot), BoolQ Matematik (GSM8k (8 shot))
- Pengekodan (HumanEval, MBPP (3-shot))
- Model Phi-2 hanya mempunyai 2.7 bilion parameter, tetapi ia berada dalam pelbagai agregat prestasinya mengatasi model 7B dan 13B Mistral dan model Llama2. Perlu dinyatakan bahawa Phi-2 berprestasi lebih baik pada tugas inferens berbilang langkah (iaitu pengekodan dan matematik) berbanding model besar 25x Llama2-70B
- Tambahan pula, walaupun saiznya lebih kecil, prestasi Phi-2 2 adalah setanding dengan Gemini Nano 2 baru-baru ini dikeluarkan oleh Google Memandangkan banyak penanda aras awam mungkin bocor ke dalam data latihan, pasukan penyelidik percaya bahawa cara terbaik untuk menguji prestasi model bahasa adalah dengan mengujinya pada kes penggunaan tertentu. Oleh itu, kajian ini menilai Phi-2 menggunakan beberapa set data dan tugasan proprietari dalaman Microsoft dan sekali lagi membandingkannya dengan Mistral dan Llama-2 Secara purata, Phi-2 mengatasi Mistral-7B dan Mistral -7B mengatasi model Llama2 (7B, 13B, 70B).
Pasukan penyelidik juga menguji secara meluas petua komuniti penyelidikan biasa. Phi-2 melakukan seperti yang diharapkan. Contohnya, untuk gesaan yang digunakan untuk menilai keupayaan model untuk menyelesaikan masalah fizik (baru-baru ini digunakan untuk menilai model Gemini Ultra), Phi-2 memberikan keputusan berikut:
Atas ialah kandungan terperinci Telefon mudah alih menjalankan model kecil Microsoft lebih baik daripada model besar dengan 2.7 bilion parameter. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



0. Apakah fungsi artikel ini? Kami mencadangkan DepthFM: model anggaran kedalaman monokular generatif yang serba boleh dan pantas. Sebagai tambahan kepada tugas anggaran kedalaman tradisional, DepthFM juga menunjukkan keupayaan terkini dalam tugas hiliran seperti mengecat kedalaman. DepthFM cekap dan boleh mensintesis peta kedalaman dalam beberapa langkah inferens. Mari kita baca karya ini bersama-sama ~ 1. Tajuk maklumat kertas: DepthFM: FastMonocularDepthEstimationwithFlowMatching Pengarang: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Bayangkan model kecerdasan buatan yang bukan sahaja mempunyai keupayaan untuk mengatasi pengkomputeran tradisional, tetapi juga mencapai prestasi yang lebih cekap pada kos yang lebih rendah. Ini bukan fiksyen sains, DeepSeek-V2[1], model MoE sumber terbuka paling berkuasa di dunia ada di sini. DeepSeek-V2 ialah gabungan model bahasa pakar (MoE) yang berkuasa dengan ciri-ciri latihan ekonomi dan inferens yang cekap. Ia terdiri daripada 236B parameter, 21B daripadanya digunakan untuk mengaktifkan setiap penanda. Berbanding dengan DeepSeek67B, DeepSeek-V2 mempunyai prestasi yang lebih kukuh, sambil menjimatkan 42.5% kos latihan, mengurangkan cache KV sebanyak 93.3% dan meningkatkan daya pemprosesan penjanaan maksimum kepada 5.76 kali. DeepSeek ialah sebuah syarikat yang meneroka kecerdasan buatan am

AI memang mengubah matematik. Baru-baru ini, Tao Zhexuan, yang telah mengambil perhatian terhadap isu ini, telah memajukan keluaran terbaru "Buletin Persatuan Matematik Amerika" (Buletin Persatuan Matematik Amerika). Memfokuskan pada topik "Adakah mesin akan mengubah matematik?", ramai ahli matematik menyatakan pendapat mereka Seluruh proses itu penuh dengan percikan api, tegar dan menarik. Penulis mempunyai barisan yang kuat, termasuk pemenang Fields Medal Akshay Venkatesh, ahli matematik China Zheng Lejun, saintis komputer NYU Ernest Davis dan ramai lagi sarjana terkenal dalam industri. Dunia AI telah berubah secara mendadak Anda tahu, banyak artikel ini telah dihantar setahun yang lalu.

Awal bulan ini, penyelidik dari MIT dan institusi lain mencadangkan alternatif yang sangat menjanjikan kepada MLP - KAN. KAN mengatasi MLP dari segi ketepatan dan kebolehtafsiran. Dan ia boleh mengatasi prestasi MLP berjalan dengan bilangan parameter yang lebih besar dengan bilangan parameter yang sangat kecil. Sebagai contoh, penulis menyatakan bahawa mereka menggunakan KAN untuk menghasilkan semula keputusan DeepMind dengan rangkaian yang lebih kecil dan tahap automasi yang lebih tinggi. Khususnya, MLP DeepMind mempunyai kira-kira 300,000 parameter, manakala KAN hanya mempunyai kira-kira 200 parameter. KAN mempunyai asas matematik yang kukuh seperti MLP berdasarkan teorem penghampiran universal, manakala KAN berdasarkan teorem perwakilan Kolmogorov-Arnold. Seperti yang ditunjukkan dalam rajah di bawah, KAN telah

Boston Dynamics Atlas secara rasmi memasuki era robot elektrik! Semalam, Atlas hidraulik hanya "menangis" menarik diri daripada peringkat sejarah Hari ini, Boston Dynamics mengumumkan bahawa Atlas elektrik sedang berfungsi. Nampaknya dalam bidang robot humanoid komersial, Boston Dynamics berazam untuk bersaing dengan Tesla. Selepas video baharu itu dikeluarkan, ia telah pun ditonton oleh lebih sejuta orang dalam masa sepuluh jam sahaja. Orang lama pergi dan peranan baru muncul. Ini adalah keperluan sejarah. Tidak dinafikan bahawa tahun ini adalah tahun letupan robot humanoid. Netizen mengulas: Kemajuan robot telah menjadikan majlis pembukaan tahun ini kelihatan seperti manusia, dan tahap kebebasan adalah jauh lebih besar daripada manusia Tetapi adakah ini benar-benar bukan filem seram? Pada permulaan video, Atlas berbaring dengan tenang di atas tanah, seolah-olah terlentang. Apa yang berikut adalah rahang-jatuh

Menghadapi ketinggalan, sambungan data mudah alih perlahan pada iPhone? Biasanya, kekuatan internet selular pada telefon anda bergantung pada beberapa faktor seperti rantau, jenis rangkaian selular, jenis perayauan, dsb. Terdapat beberapa perkara yang boleh anda lakukan untuk mendapatkan sambungan Internet selular yang lebih pantas dan boleh dipercayai. Betulkan 1 – Paksa Mulakan Semula iPhone Kadangkala, paksa memulakan semula peranti anda hanya menetapkan semula banyak perkara, termasuk sambungan selular. Langkah 1 – Hanya tekan kekunci naikkan kelantangan sekali dan lepaskan. Seterusnya, tekan kekunci Turun Kelantangan dan lepaskannya semula. Langkah 2 - Bahagian seterusnya proses adalah untuk menahan butang di sebelah kanan. Biarkan iPhone selesai dimulakan semula. Dayakan data selular dan semak kelajuan rangkaian. Semak semula Betulkan 2 – Tukar mod data Walaupun 5G menawarkan kelajuan rangkaian yang lebih baik, ia berfungsi lebih baik apabila isyarat lemah

Saya menangis hingga mati. Dunia sedang membina model besar. Data di Internet tidak mencukupi. Model latihan kelihatan seperti "The Hunger Games", dan penyelidik AI di seluruh dunia bimbang tentang cara memberi makan data ini kepada pemakan yang rakus. Masalah ini amat ketara dalam tugas berbilang modal. Pada masa mereka mengalami kerugian, pasukan pemula dari Jabatan Universiti Renmin China menggunakan model baharu mereka sendiri untuk menjadi yang pertama di China untuk menjadikan "suapan data yang dijana model itu sendiri" menjadi kenyataan. Selain itu, ia merupakan pendekatan serampang dua mata dari segi pemahaman dan sisi penjanaan Kedua-dua pihak boleh menjana data baharu berbilang modal yang berkualiti tinggi dan memberikan maklum balas data kepada model itu sendiri. Apakah model? Awaker 1.0, model berbilang modal besar yang baru sahaja muncul di Forum Zhongguancun. Siapa pasukan itu? Enjin Sophon. Diasaskan oleh Gao Yizhao, pelajar kedoktoran di Sekolah Kecerdasan Buatan Hillhouse Universiti Renmin.

Baru-baru ini, bulatan tentera telah terharu dengan berita: jet pejuang tentera AS kini boleh melengkapkan pertempuran udara automatik sepenuhnya menggunakan AI. Ya, baru-baru ini, jet pejuang AI tentera AS telah didedahkan buat pertama kali, mendedahkan misterinya. Nama penuh pesawat pejuang ini ialah Variable Stability Simulator Test Aircraft (VISTA). Ia diterbangkan sendiri oleh Setiausaha Tentera Udara AS untuk mensimulasikan pertempuran udara satu lawan satu. Pada 2 Mei, Setiausaha Tentera Udara A.S. Frank Kendall berlepas menggunakan X-62AVISTA di Pangkalan Tentera Udara Edwards Ambil perhatian bahawa semasa penerbangan selama satu jam, semua tindakan penerbangan telah diselesaikan secara autonomi oleh AI! Kendall berkata - "Sejak beberapa dekad yang lalu, kami telah memikirkan tentang potensi tanpa had pertempuran udara-ke-udara autonomi, tetapi ia sentiasa kelihatan di luar jangkauan." Namun kini,
