


Ciri-ciri wajah berterbangan, mulut terbuka, mata terbuka, dan kening terangkat AI boleh menirunya dengan sempurna Penipuan video adalah mustahil untuk dicegah.
Keupayaan tiruan AI yang begitu kuat, benar-benar mustahil untuk mengawalnya, sama sekali mustahil untuk mengawalnya. Adakah pembangunan AI mencapai tahap ini sekarang?
Anda menggerakkan kaki hadapan anda untuk membiarkan ciri-ciri wajah anda terbang, dan ekspresi yang sama diulang pada kaki belakang anda Menatap, mengangkat kening, mencebik, tidak kira betapa berlebihan ekspresi itu, semuanya ditiru dengan sempurna.
Tingkatkan kesukaran, angkat kening lebih tinggi, buka mata lebih luas, malah bentuk mulut bengkok, dan avatar watak maya dapat menghasilkan semula ekspresi dengan sempurna.
Apabila anda melaraskan parameter di sebelah kiri, avatar maya di sebelah kanan juga akan menukar pergerakannya dengan sewajarnya
Berikan tiruan mulut dan mata dikatakan betul-betul sama, ia hanya boleh Katakan ungkapan itu betul-betul sama (kanan sekali).
Penyelidikan ini datang daripada institusi seperti Universiti Teknikal Munich, yang mencadangkan GaussianAvatars, kaedah yang boleh digunakan untuk mencipta avatar kepala realistik yang boleh dikawal sepenuhnya dari segi ekspresi, postur dan sudut pandangan (sudut pandang) . .
Dalam bidang penglihatan dan grafik komputer, mencipta kepala maya yang boleh mewakili manusia secara dinamik sentiasa menjadi masalah yang mencabar. Terutama dari segi ekspresi wajah dan perincian yang melampau, agak sukar untuk menangkap butiran seperti kedutan dan rambut, dan watak maya yang dihasilkan sering mengalami artifak visual
Dalam tempoh masa lalu, Medan Sinaran Neural ( NeRF) ) dan variannya telah mencapai hasil yang mengagumkan dalam membina semula adegan statik daripada pemerhatian berbilang paparan. Penyelidikan seterusnya memperluaskan kaedah ini, membolehkan NeRF digunakan untuk pemodelan adegan dinamik bagi senario yang disesuaikan dengan manusia. Walau bagaimanapun, kelemahan kaedah ini ialah kekurangan kawalan dan oleh itu ketidakupayaan untuk menyesuaikan diri dengan baik kepada pose dan ekspresi baharu
- Kaedah "3D Gaussian Spray" yang baru muncul mencapai kualiti rendering yang lebih tinggi daripada NeRF dan boleh digunakan dalam masa nyata Lihat komposisi. Walau bagaimanapun, kaedah ini tidak menyokong animasi output yang dibina semula
- Makalah ini mencadangkan GaussianAvatars, kaedah perwakilan kepala 3D dinamik berdasarkan percikan Gaussian tiga dimensi.
Secara khusus, diberikan jejaring FLAME (memodelkan keseluruhan kepala), mereka memulakan Gaussian 3D di tengah setiap segi tiga. Apabila jaringan FLAME dianimasikan, setiap model Gaussian diterjemahkan, diputar dan diskalakan berdasarkan segi tiga induknya. Gaussian 3D kemudian membentuk medan sinaran di atas jejaring, mengimbangi kawasan di mana jejaring tidak diselaraskan dengan tepat atau gagal menghasilkan semula elemen visual tertentu.
Untuk mengekalkan tahap realisme tinggi watak maya, artikel ini menggunakan strategi pewarisan yang mengikat. Pada masa yang sama, kertas kerja ini juga mengkaji bagaimana untuk mencapai keseimbangan antara mengekalkan realisme dan kestabilan untuk menghidupkan ekspresi novel dan postur watak maya. Hasil penyelidikan menunjukkan bahawa berbanding dengan penyelidikan sedia ada, GaussianAvatars berprestasi baik dalam pemaparan paparan novel dan pemacu pengeluaran semula video
Pengenalan Kaedah
As As2 di bawah ini. rakaman video berbilang tontonan kepala manusia. Untuk setiap langkah masa, GaussianAvatars menggunakan penjejak kepala fotometri untuk memadankan parameter FLAME kepada pemerhatian berbilang paparan dan parameter kamera yang diketahui.
FAME mesh mempunyai kedudukan bucu yang berbeza tetapi topologi yang sama, jadi pasukan boleh mencipta sambungan yang konsisten antara segi tiga mesh dan percikan Gaussian 3D. Render percikan ke dalam imej menggunakan rasterizer jubin boleh dibezakan. Kemudian, dengan penyeliaan imej sebenar, avatar kepala manusia yang realistik dipelajari
Untuk kualiti optimum, pemandangan statik perlu dipadatkan dan dipangkas oleh percikan Gaussian melalui satu set operasi kawalan ketumpatan adaptif. Untuk mencapai matlamat ini, pasukan penyelidik mereka bentuk strategi pewarisan yang mengikat yang mengekalkan titik Gaussian baharu terikat pada jaringan FLAME tanpa memusnahkan hubungan antara segi tiga dan percikan
Hasil eksperimen
Kajian menggunakan teknik sintesis perspektif baharu untuk menilai kualiti pembinaan semula dan menilai kesetiaan animasi melalui pengulangan kendiri. Rajah 3 di bawah menunjukkan keputusan perbandingan kualitatif antara kaedah yang berbeza. Dari segi sintesis perspektif baharu, semua kaedah mampu menghasilkan hasil pemaparan yang munasabah. Walau bagaimanapun, apabila melihat lebih dekat keputusan PointAvatar, dapat dilihat bahawa artifak titik berlaku disebabkan saiz titik tetapnya. GaussianAvatars menggunakan teknologi penskalaan anisotropik Gaussian 3D boleh mengurangkan masalah ini
Kita boleh membuat kesimpulan yang sama daripada perbandingan kuantitatif dalam Jadual 1. Berbanding dengan kaedah lain, GaussianAvatars berprestasi baik dalam sintesis paparan baharu, juga cemerlang dalam lakonan semula kendiri, dan telah mengurangkan perbezaan persepsi dalam LPIPS dengan ketara. Perlu diingatkan bahawa lakonan semula kendiri adalah berdasarkan penjejakan grid FLAME dan mungkin tidak diselaraskan sepenuhnya dengan imej sasaran
Untuk menguji prestasi animasi avatar di dunia nyata, kajian telah dijalankan merentas Eksperimen dalam pembiakan identiti. Keputusan menunjukkan bahawa avatar itu dengan tepat menghasilkan semula gerakan berkelip dan mulut pelakon sumber, mempersembahkan dinamik yang meriah dan kompleks seperti kedutan, dan lain-lain. kajian Eksperimen Ablasi juga dilakukan, dan hasilnya ditunjukkan di bawah.
Atas ialah kandungan terperinci Ciri-ciri wajah berterbangan, mulut terbuka, mata terbuka, dan kening terangkat AI boleh menirunya dengan sempurna Penipuan video adalah mustahil untuk dicegah.. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



DDREASE ialah alat untuk memulihkan data daripada fail atau peranti sekat seperti cakera keras, SSD, cakera RAM, CD, DVD dan peranti storan USB. Ia menyalin data dari satu peranti blok ke peranti lain, meninggalkan blok data yang rosak dan hanya memindahkan blok data yang baik. ddreasue ialah alat pemulihan yang berkuasa yang automatik sepenuhnya kerana ia tidak memerlukan sebarang gangguan semasa operasi pemulihan. Selain itu, terima kasih kepada fail peta ddasue, ia boleh dihentikan dan disambung semula pada bila-bila masa. Ciri-ciri utama lain DDREASE adalah seperti berikut: Ia tidak menimpa data yang dipulihkan tetapi mengisi jurang sekiranya pemulihan berulang. Walau bagaimanapun, ia boleh dipotong jika alat itu diarahkan untuk melakukannya secara eksplisit. Pulihkan data daripada berbilang fail atau blok kepada satu

0. Apakah fungsi artikel ini? Kami mencadangkan DepthFM: model anggaran kedalaman monokular generatif yang serba boleh dan pantas. Sebagai tambahan kepada tugas anggaran kedalaman tradisional, DepthFM juga menunjukkan keupayaan terkini dalam tugas hiliran seperti mengecat kedalaman. DepthFM cekap dan boleh mensintesis peta kedalaman dalam beberapa langkah inferens. Mari kita baca karya ini bersama-sama ~ 1. Tajuk maklumat kertas: DepthFM: FastMonocularDepthEstimationwithFlowMatching Pengarang: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Prestasi JAX, yang dipromosikan oleh Google, telah mengatasi Pytorch dan TensorFlow dalam ujian penanda aras baru-baru ini, menduduki tempat pertama dalam 7 penunjuk. Dan ujian tidak dilakukan pada TPU dengan prestasi JAX terbaik. Walaupun dalam kalangan pembangun, Pytorch masih lebih popular daripada Tensorflow. Tetapi pada masa hadapan, mungkin lebih banyak model besar akan dilatih dan dijalankan berdasarkan platform JAX. Model Baru-baru ini, pasukan Keras menanda aras tiga hujung belakang (TensorFlow, JAX, PyTorch) dengan pelaksanaan PyTorch asli dan Keras2 dengan TensorFlow. Pertama, mereka memilih satu set arus perdana

Menghadapi ketinggalan, sambungan data mudah alih perlahan pada iPhone? Biasanya, kekuatan internet selular pada telefon anda bergantung pada beberapa faktor seperti rantau, jenis rangkaian selular, jenis perayauan, dsb. Terdapat beberapa perkara yang boleh anda lakukan untuk mendapatkan sambungan Internet selular yang lebih pantas dan boleh dipercayai. Betulkan 1 – Paksa Mulakan Semula iPhone Kadangkala, paksa memulakan semula peranti anda hanya menetapkan semula banyak perkara, termasuk sambungan selular. Langkah 1 – Hanya tekan kekunci naikkan kelantangan sekali dan lepaskan. Seterusnya, tekan kekunci Turun Kelantangan dan lepaskannya semula. Langkah 2 - Bahagian seterusnya proses adalah untuk menahan butang di sebelah kanan. Biarkan iPhone selesai dimulakan semula. Dayakan data selular dan semak kelajuan rangkaian. Semak semula Betulkan 2 – Tukar mod data Walaupun 5G menawarkan kelajuan rangkaian yang lebih baik, ia berfungsi lebih baik apabila isyarat lemah

Saya menangis hingga mati. Dunia sedang membina model besar. Data di Internet tidak mencukupi. Model latihan kelihatan seperti "The Hunger Games", dan penyelidik AI di seluruh dunia bimbang tentang cara memberi makan data ini kepada pemakan yang rakus. Masalah ini amat ketara dalam tugas berbilang modal. Pada masa mereka mengalami kerugian, pasukan pemula dari Jabatan Universiti Renmin China menggunakan model baharu mereka sendiri untuk menjadi yang pertama di China untuk menjadikan "suapan data yang dijana model itu sendiri" menjadi kenyataan. Selain itu, ia merupakan pendekatan serampang dua mata dari segi pemahaman dan sisi penjanaan Kedua-dua pihak boleh menjana data baharu berbilang modal yang berkualiti tinggi dan memberikan maklum balas data kepada model itu sendiri. Apakah model? Awaker 1.0, model berbilang modal besar yang baru sahaja muncul di Forum Zhongguancun. Siapa pasukan itu? Enjin Sophon. Diasaskan oleh Gao Yizhao, pelajar kedoktoran di Sekolah Kecerdasan Buatan Hillhouse Universiti Renmin.

Minggu ini, FigureAI, sebuah syarikat robotik yang dilaburkan oleh OpenAI, Microsoft, Bezos, dan Nvidia, mengumumkan bahawa ia telah menerima hampir $700 juta dalam pembiayaan dan merancang untuk membangunkan robot humanoid yang boleh berjalan secara bebas dalam tahun hadapan. Dan Optimus Prime Tesla telah berulang kali menerima berita baik. Tiada siapa yang meragui bahawa tahun ini akan menjadi tahun apabila robot humanoid meletup. SanctuaryAI, sebuah syarikat robotik yang berpangkalan di Kanada, baru-baru ini mengeluarkan robot humanoid baharu, Phoenix. Pegawai mendakwa bahawa ia boleh menyelesaikan banyak tugas secara autonomi pada kelajuan yang sama seperti manusia. Pheonix, robot pertama di dunia yang boleh menyelesaikan tugas secara autonomi pada kelajuan manusia, boleh mencengkam, menggerakkan dan meletakkan setiap objek secara elegan di sisi kiri dan kanannya dengan perlahan. Ia boleh mengenal pasti objek secara autonomi

Baru-baru ini, bulatan tentera telah terharu dengan berita: jet pejuang tentera AS kini boleh melengkapkan pertempuran udara automatik sepenuhnya menggunakan AI. Ya, baru-baru ini, jet pejuang AI tentera AS telah didedahkan buat pertama kali, mendedahkan misterinya. Nama penuh pesawat pejuang ini ialah Variable Stability Simulator Test Aircraft (VISTA). Ia diterbangkan sendiri oleh Setiausaha Tentera Udara AS untuk mensimulasikan pertempuran udara satu lawan satu. Pada 2 Mei, Setiausaha Tentera Udara A.S. Frank Kendall berlepas menggunakan X-62AVISTA di Pangkalan Tentera Udara Edwards Ambil perhatian bahawa semasa penerbangan selama satu jam, semua tindakan penerbangan telah diselesaikan secara autonomi oleh AI! Kendall berkata - "Sejak beberapa dekad yang lalu, kami telah memikirkan tentang potensi tanpa had pertempuran udara-ke-udara autonomi, tetapi ia sentiasa kelihatan di luar jangkauan." Namun kini,

SOTA baharu untuk keupayaan memahami dokumen multimodal! Pasukan Alibaba mPLUG mengeluarkan kerja sumber terbuka terkini mPLUG-DocOwl1.5, yang mencadangkan satu siri penyelesaian untuk menangani empat cabaran utama pengecaman teks imej resolusi tinggi, pemahaman struktur dokumen am, arahan mengikut dan pengenalan pengetahuan luaran. Tanpa berlengah lagi, mari kita lihat kesannya dahulu. Pengecaman satu klik dan penukaran carta dengan struktur kompleks ke dalam format Markdown: Carta gaya berbeza tersedia: Pengecaman dan kedudukan teks yang lebih terperinci juga boleh dikendalikan dengan mudah: Penjelasan terperinci tentang pemahaman dokumen juga boleh diberikan: Anda tahu, "Pemahaman Dokumen " pada masa ini Senario penting untuk pelaksanaan model bahasa yang besar. Terdapat banyak produk di pasaran untuk membantu pembacaan dokumen. Sesetengah daripada mereka menggunakan sistem OCR untuk pengecaman teks dan bekerjasama dengan LLM untuk pemprosesan teks.
