


Amalan Pembangunan Coroutine Asynchronous: Mengoptimumkan Kelajuan Memuat Naik dan Memuat Turun Fail Besar
Amalan pembangunan coroutine tak segerak: mengoptimumkan kelajuan memuat naik dan memuat turun fail besar
Dengan pembangunan dan pempopularan Internet, penghantaran fail telah menjadi kebiasaan. Tetapi apabila fail yang dipindahkan menjadi lebih besar dan lebih besar, kaedah memuat naik dan memuat turun fail tradisional akan menghadapi banyak kesukaran. Untuk mengoptimumkan kelajuan penghantaran fail besar dan meningkatkan pengalaman pengguna, kami boleh melaksanakannya melalui coroutine tak segerak. Artikel ini akan berkongsi cara menggunakan teknologi coroutine tak segerak untuk mengoptimumkan muat naik dan kelajuan muat turun fail besar serta menyediakan contoh kod khusus.
1. Pengenalan kepada teknologi coroutine tak segerak
Coroutine tak segerak pada asasnya ialah model pengaturcaraan. Cirinya ialah apabila penyekatan berlaku, ia boleh segera melepaskan kawalan benang semasa, menyerahkan kawalan kepada tugas lain untuk meneruskan pelaksanaan, dan tunggu sehingga penyekatan selesai sebelum kembali ke pelaksanaan, dengan itu merealisasikan pertukaran antara pelbagai tugas untuk dicapai hasil yang lebih baik.
Teknologi coroutine tak segerak biasa termasuk asyncio dalam Python, Callback dan Promise dalam Node.js, dsb. Bahasa dan teknologi yang berbeza mungkin mempunyai kaedah pelaksanaan yang berbeza, tetapi pada asasnya semuanya direka untuk menggunakan sumber komputer dengan lebih baik untuk meningkatkan keselarasan dan kecekapan pemprosesan.
2. Optimumkan kelajuan muat naik fail yang besar
- Apabila menggunakan muat naik chunked
Apabila memuat naik fail besar, pemindahan keseluruhan fail ke pelayan pada satu masa pasti akan menyebabkan kesesakan rangkaian dan kelajuan penghantaran yang perlahan. Untuk mengelakkan masalah ini, fail besar boleh dimuat naik ke dalam beberapa ketulan Setiap ketulan adalah paket data bebas dan boleh dimuat naik secara selari untuk mempercepatkan muat naik.
Menggunakan teknologi coroutine tak segerak, anda boleh melaksanakan muat naik bongkah dan menghantar berbilang ketulan data secara selari untuk mencapai operasi muat naik yang lebih cekap. Berikut ialah pelaksanaan kod khusus.
import aiohttp import asyncio async def upload_chunk(session, url, file, offset, size): headers = {'Content-Length': str(size), 'Content-Range': f'bytes {offset}-{offset+size-1}/{file_size}'} data = file.read(size) async with session.put(url, headers=headers, data=data) as resp: return await resp.json() async def upload_file_with_chunks(session, url, file): file_size = os.path.getsize(file.name) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(upload_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/upload' file = open('large_file.mp4', 'rb') result = await upload_file_with_chunks(session, url, file) print(result) asyncio.run(main())
Dalam kod ini, kami membahagikan keseluruhan fail kepada blok data 5MB, dan kemudian menggunakan kaedah asyncio.gather()
untuk melaksanakan tugas memuat naik setiap blok data secara serentak untuk mempercepatkan muat naik. kelajuan. Idea muat naik potongan juga terpakai untuk muat turun fail Sila lihat bahagian seterusnya untuk butiran. asyncio.gather()
方法将上传各个数据块的任务并发执行,以加快上传速度。分块上传的思路也同样适用于文件下载,具体请看下一节内容。
- 多线程上传
除了使用分块上传,还可以使用多线程的方式来实现大文件的上传操作。使用多线程可以更充分地利用计算机的多核资源,从而加速文件上传的速度。下面是具体的代码实现。
import threading import requests class MultiPartUpload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = os.path.getsize(self.file_path) self.chunk_size = self.file_size//num_thread self.threads = [] self.lock = threading.Lock() def upload(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 headers = {"Content-Range": "bytes %s-%s/%s" % (start, end, self.file_size), "Content-Length": str(self.chunk_size)} data = open(self.file_path, 'rb') data.seek(start) resp = requests.put(self.url, headers=headers, data=data.read(self.chunk_size)) self.lock.acquire() print("Part %d status: %s" % (i, resp.status_code)) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.upload, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/upload' file = 'large_file.mp4' uploader = MultiPartUpload(url, file) uploader.run()
在这段代码中,我们使用了Python标准库中的threading
模块来实现多线程上传。将整个文件分成多个数据块,每个线程负责上传其中的一块,从而实现并发上传。使用锁机制来保护并发上传过程中的线程安全。
三、优化大文件下载的速度
除了上传,下载大文件同样是一个很常见的需求,同样可以通过异步协程来实现优化。
- 分块下载
和分块上传类似,分块下载将整个文件划分成若干块,每一块独立下载,并行传输多个块数据,从而加快下载速度。具体的代码实现如下:
import aiohttp import asyncio import os async def download_chunk(session, url, file, offset, size): headers = {'Range': f'bytes={offset}-{offset+size-1}'} async with session.get(url, headers=headers) as resp: data = await resp.read() file.seek(offset) file.write(data) return len(data) async def download_file_with_chunks(session, url, file): async with session.head(url) as resp: file_size = int(resp.headers.get('Content-Length')) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(download_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/download/large_file.mp4' file = open('large_file.mp4', 'wb+') await download_file_with_chunks(session, url, file) asyncio.run(main())
在这段代码中,我们使用了aiohttp
库来进行异步协程的并行下载。同样地,将整个文件分成大小为5MB的数据块,然后使用asyncio.gather()
方法将下载各个数据块的任务并发执行,加快文件下载速度。
- 多线程下载
除了分块下载,还可以使用多线程下载的方式来实现大文件的下载操作。具体的代码实现如下:
import threading import requests class MultiPartDownload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = requests.get(self.url, stream=True).headers.get('Content-Length') self.chunk_size = int(self.file_size) // self.num_thread self.threads = [] self.lock = threading.Lock() def download(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 if i != self.num_thread - 1 else '' headers = {"Range": "bytes=%s-%s" % (start, end)} data = requests.get(self.url, headers=headers, stream=True) with open(self.file_path, 'rb+') as f: f.seek(start) f.write(data.content) self.lock.acquire() print("Part %d Downloaded." % i) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.download, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/download/large_file.mp4' file = 'large_file.mp4' downloader = MultiPartDownload(url, file) downloader.run()
在这段代码中,我们同样使用了Python标准库中的threading
- Muat naik berbilang benang
Selain menggunakan muat naik chunked, anda juga boleh menggunakan multi-threading untuk memuat naik fail besar. Menggunakan multi-threading boleh menggunakan sepenuhnya sumber berbilang teras komputer anda, dengan itu mempercepatkan muat naik fail. Berikut ialah pelaksanaan kod khusus.
rrreee🎜Dalam kod ini, kami menggunakan modulaiohttp
untuk melaksanakan muat turun selari coroutine tak segerak. Begitu juga, bahagikan keseluruhan fail kepada blok data 5MB, dan kemudian gunakan kaedah asyncio.gather()
untuk melaksanakan tugas memuat turun setiap blok data secara serentak untuk mempercepatkan muat turun fail. 🎜- 🎜Muat turun berbilang benang🎜🎜🎜Selain memuat turun dalam ketul, anda juga boleh menggunakan muat turun berbilang benang untuk memuat turun fail besar. Pelaksanaan kod khusus adalah seperti berikut: 🎜rrreee🎜Dalam kod ini, kami juga menggunakan modul
Atas ialah kandungan terperinci Amalan Pembangunan Coroutine Asynchronous: Mengoptimumkan Kelajuan Memuat Naik dan Memuat Turun Fail Besar. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Terdapat hubungan ibu bapa-anak antara fungsi dan goroutine dalam Go Gooutine induk mencipta goroutine kanak-kanak, dan goroutine kanak-kanak boleh mengakses pembolehubah goroutine induk tetapi bukan sebaliknya. Buat goroutine kanak-kanak menggunakan kata kunci go, dan goroutine kanak-kanak dilaksanakan melalui fungsi tanpa nama atau fungsi bernama. Goroutine induk boleh menunggu goroutine anak selesai melalui penyegerakan.WaitGroup untuk memastikan program tidak keluar sebelum semua goroutine kanak-kanak selesai.

Ringkasan: Pengaturcaraan tak segerak dalam C++ membenarkan berbilang tugas tanpa menunggu operasi yang memakan masa. Gunakan penunjuk fungsi untuk mencipta penunjuk kepada fungsi. Fungsi panggil balik dipanggil apabila operasi tak segerak selesai. Perpustakaan seperti boost::asio menyediakan sokongan pengaturcaraan tak segerak. Kes praktikal menunjukkan cara menggunakan penunjuk fungsi dan boost::asio untuk melaksanakan permintaan rangkaian tak segerak.

Concurrency dan coroutine digunakan dalam reka bentuk GoAPI untuk: Pemprosesan berprestasi tinggi: Memproses berbilang permintaan serentak untuk meningkatkan prestasi. Pemprosesan tak segerak: Gunakan coroutine untuk memproses tugas (seperti menghantar e-mel) secara tidak segerak, melepaskan utas utama. Pemprosesan strim: Gunakan coroutine untuk memproses strim data dengan cekap (seperti bacaan pangkalan data).

Coroutine ialah konsep abstrak untuk melaksanakan tugas secara serentak, dan goroutine ialah fungsi benang ringan dalam bahasa Go yang melaksanakan konsep coroutine. Kedua-duanya berkait rapat, tetapi penggunaan sumber goroutine lebih rendah dan diuruskan oleh penjadual Go. Goroutine digunakan secara meluas dalam pertempuran sebenar, seperti memproses permintaan web secara serentak dan meningkatkan prestasi program.

Kitaran hayat coroutine Go boleh dikawal dengan cara berikut: Buat coroutine: Gunakan kata kunci go untuk memulakan tugas baharu. Tamatkan coroutine: tunggu semua coroutine selesai, gunakan sync.WaitGroup. Gunakan isyarat penutup saluran. Gunakan konteks konteks.Konteks.

3 masalah dan penyelesaian biasa dalam pengaturcaraan tak segerak dalam rangka kerja Java: Callback Hell: Gunakan Promise atau CompletableFuture untuk mengurus panggilan balik dalam gaya yang lebih intuitif. Perbalahan sumber: Gunakan primitif penyegerakan (seperti kunci) untuk melindungi sumber yang dikongsi dan pertimbangkan untuk menggunakan koleksi selamat benang (seperti ConcurrentHashMap). Pengecualian tidak terkendali: Mengendalikan pengecualian dalam tugas secara eksplisit dan menggunakan rangka kerja pengendalian pengecualian (seperti CompletableFuture.exceptionally()) untuk mengendalikan pengecualian.

Rangka kerja Go menggunakan ciri serentak dan tak segerak Go untuk menyediakan mekanisme untuk mengendalikan tugas serentak dan tak segerak dengan cekap: 1. Keselarasan dicapai melalui Goroutine, membolehkan berbilang tugasan dilaksanakan pada masa yang sama 2. Pengaturcaraan tak segerak dilaksanakan melalui saluran, yang boleh dilaksanakan tanpa menyekat utas utama Tugas 3. Sesuai untuk senario praktikal, seperti pemprosesan serentak permintaan HTTP, pemerolehan tak segerak data pangkalan data, dsb.

Kelebihan pengaturcaraan tak segerak dalam PHP termasuk daya pemprosesan yang lebih tinggi, kependaman yang lebih rendah, penggunaan sumber yang lebih baik dan kebolehskalaan. Kelemahan termasuk kerumitan, kesukaran dalam penyahpepijatan dan sokongan perpustakaan terhad. Dalam kes sebenar, ReactPHP digunakan untuk mengendalikan sambungan WebSocket, menunjukkan aplikasi praktikal pengaturcaraan tak segerak.
