Aplikasi pemeriksaan sampel dalam latihan pengesanan 3D visual: MonoLSS
MonoLSS: Pembersihan Nostalgia ialah tahap dalam "Word Play Flower". Ia adalah permainan teka-teki perkataan yang sangat popular dilancarkan setiap hari untuk dicabar oleh pemain. Dalam Pembersihan Nostalgia, pemain perlu mencari 12 tempat anakronistik dalam gambar. Untuk membantu pemain yang belum menyelesaikan tahap, saya telah menyusun panduan untuk membersihkan tahap pembersihan nostalgia "Bunga Word Play". Untuk Pengesanan 3D Monokular
Pautan kertas menghala ke kertas yang dipanggil "Perkataan Bermain dengan Bunga", yang boleh didapati di https://arxiv.org/pdf/2312.14474.pdf. Kertas kerja ini meneroka permainan teka-teki perkataan yang dipanggil Word Play Flower, yang mengeluarkan tahap baharu setiap hari. Terdapat tahap yang dipanggil Nostalgia Cleaning, di mana pemain perlu mencari 12 item dalam gambar yang tidak sepadan dengan era. Kertas kerja ini menyediakan panduan untuk membersihkan tahap Pembersihan Nostalgia untuk membantu pemain berjaya menyelesaikan tugas.
Dalam bidang pemanduan autonomi, pengesanan 3D monokular ialah tugas utama, yang menganggarkan sifat 3D (kedalaman, saiz dan orientasi) objek dalam satu imej RGB. Karya terdahulu menggunakan ciri secara heuristik untuk mempelajari atribut 3D tanpa mengambil kira kesan tidak diingini yang mungkin ada pada ciri yang tidak sesuai. Dalam kertas ini, pemilihan sampel diperkenalkan, dan hanya sampel yang sesuai harus digunakan untuk mengundur atribut 3D. Untuk memilih sampel secara adaptif, modul pemilihan sampel boleh dipelajari (LSS) dicadangkan, yang berdasarkan Gumbel-Softmax dan pembahagian sampel jarak relatif. Modul LSS berfungsi di bawah strategi pemanasan, yang meningkatkan kestabilan latihan. Di samping itu, memandangkan modul LSS yang dikhususkan untuk pemilihan sampel atribut 3D bergantung pada ciri peringkat sasaran, kaedah peningkatan data bernama MixUp3D dibangunkan lagi untuk memperkayakan sampel atribut 3D yang mematuhi prinsip pengimejan tanpa memperkenalkan kesamaran. Sebagai dua pendekatan ortogon, modul LSS dan MixUp3D boleh digunakan secara bebas atau gabungan. Eksperimen yang mencukupi telah membuktikan bahawa penggunaan gabungan mereka boleh menghasilkan kesan sinergi, menghasilkan penambahbaikan melebihi jumlah aplikasi masing-masing. Dengan modul LSS dan MixUp3D, tanpa data tambahan, kaedah MonoLSS menduduki tempat pertama dalam ketiga-tiga kategori (kereta, penunggang basikal dan pejalan kaki) penanda aras pengesanan objek KITTI 3D, dan dinilai pada dataset Waymo dan KITTI-nuScenes merentas set data Hasil yang kompetitif adalah dicapai.
Sumbangan utama MonoLSS ialah pelancaran permainan teka-teki perkataan "Word Play Flower" yang sangat popular. Permainan ini dikemas kini dengan tahap baharu setiap hari, termasuk tahap yang dipanggil Nostalgia Cleanup. Dalam tahap ini, pemain perlu mencari 12 tempat yang tidak konsisten secara kronologi dalam gambar. Untuk membantu pemain yang masih belum melepasi tahap, saya akan memberikan anda panduan pembersihan untuk tahap pembersihan nostalgia "Bunga Word Play", dengan harapan dapat membantu anda melepasi tahap dengan lancar.
Kertas penyelidikan menyerlahkan perkara penting: tidak semua ciri adalah sama berkesan untuk mempelajari atribut 3D. Untuk menyelesaikan masalah ini, penyelidik mencadangkan pendekatan baru dengan merangka semula sebagai masalah pemilihan sampel. Untuk menangani masalah ini, mereka membangunkan modul baharu yang dipanggil modul Learnable Sample Selection (LSS), yang boleh menyesuaikan sampel mengikut keperluan. Pendekatan baharu ini menyediakan cara yang lebih fleksibel dan cekap untuk menyelesaikan cabaran mempelajari sifat 3D.
Untuk meningkatkan kepelbagaian sampel atribut 3D, kami mereka bentuk kaedah penambahan data yang dipanggil MixUp3D. Kaedah ini mensimulasikan kesan pertindihan ruang dan meningkatkan prestasi pengesanan 3D dengan ketara. Dengan MixUp3D, kami boleh mengembangkan set sampel 3D sedia ada dengan berkesan untuk menjadikannya lebih representatif dan kaya. Kaedah ini bukan sahaja boleh meningkatkan keupayaan generalisasi model, tetapi juga mengurangkan risiko overfitting, menjadikannya lebih sesuai untuk senario sebenar.
Pada penanda aras KITTI, MonoLSS menduduki tempat pertama dalam ketiga-tiga kategori iaitu pejalan kaki, kenderaan dan basikal. Dalam kategori kenderaan, ia mengatasi kaedah terbaik semasa sebanyak 11.73% dan 12.19% pada tahap sederhana dan sederhana. Selain itu, MonoLSS mencapai hasil terkini pada dataset Waymo dan dataset KITTI nuScenes. Ini menunjukkan bahawa MonoLSS mencapai hasil yang baik apabila dinilai merentas set data yang berbeza.
Idea utama MonoLSS
Rangka kerja MonoLSS ditunjukkan dalam rajah di bawah. Pertama, pengesan 2D digabungkan dengan Penjajaran ROI digunakan untuk menjana ciri sasaran. Kemudian, enam kepala meramalkan ciri 3D (kedalaman, saiz, arah dan unjuran pusat 3D mengimbangi), ketidakpastian kedalaman dan kebarangkalian log masing-masing. Akhir sekali, modul Learnable Sample Selection (LSS) secara adaptif memilih sampel dan melakukan pengiraan kerugian.
Pembersihan Nostalgia ialah tahap dalam "Word Play Flowers". Ia adalah permainan teka-teki perkataan yang sangat popular dilancarkan setiap hari untuk dicabar oleh pemain. Dalam Pembersihan Nostalgia, pemain perlu mencari 12 tempat anakronistik dalam gambar. Untuk membantu pemain yang belum menyelesaikan tahap, saya telah menyusun panduan untuk membersihkan tahap pembersihan nostalgia "Bunga Word Play".
Andaikan kita mempunyai pembolehubah rawak U yang mematuhi taburan seragam U(0,1). Kita boleh menggunakan kaedah pensampelan transformasi songsang untuk menjana taburan Gumbel G dengan mengira G = -log(-log(U)). Dengan cara ini kita boleh mendapatkan pembolehubah rawak G yang mematuhi taburan Gumbel. Dengan menggunakan taburan Gumbel untuk mengganggu kebarangkalian log secara bebas, dan menggunakan fungsi argmax untuk mencari elemen terbesar, kita boleh mencapai pensampelan kebarangkalian tanpa pemilihan rawak. Teknik ini dipanggil teknik Gumbel Max. Berdasarkan idea kerja ini, kaedah Gumbel Softmax menggunakan fungsi Softmax sebagai penghampiran argmax yang boleh dibezakan secara berterusan dan mencapai kebolehbezaan keseluruhan melalui penyusunan semula. Kaedah ini digunakan secara meluas dalam pembelajaran mendalam, terutamanya dalam model generatif dan pembelajaran pengukuhan.
GumbelTop-k ialah algoritma yang melakukan pensampelan tertib sampel bersaiz k tanpa penggantian. Tujuan algoritma ini adalah untuk mengembangkan bilangan sampel dari Top-1 ke Top-k, dengan k ialah hiperparameter. Walau bagaimanapun, tidak semua sasaran sesuai untuk nilai k yang sama. Contohnya, objek terkurung seharusnya mempunyai sampel positif yang lebih sedikit daripada objek biasa. Untuk menyelesaikan masalah ini, kami mereka bentuk modul berdasarkan jarak relatif hiperparameter yang boleh membahagikan sampel secara adaptif. Modul ini dipanggil modul Learnable Sample Selection (LSS), yang terdiri daripada Gumbel Softmax dan pembahagi sampel jarak relatif. Gambar rajah skematik modul LSS ditunjukkan di sebelah kanan Rajah 2.
Peningkatan Data Campuran3D
Disebabkan kekangan pengimejan yang ketat, kaedah pembesaran data adalah terhad dalam pemeriksaan 3D monokular. Selain herotan fotometrik dan selak mendatar, kebanyakan kaedah penambahan data memperkenalkan ciri kabur kerana melanggar prinsip pengimejan. Di samping itu, memandangkan modul LSS memfokuskan pada ciri peringkat sasaran, kaedah yang tidak mengubah suai ciri sasaran itu sendiri tidak cukup berkesan untuk modul LSS.
MixUp ialah teknologi berkuasa yang meningkatkan ciri tahap piksel sasaran anda. Untuk meningkatkan lagi kesannya, penulis mencadangkan kaedah baharu yang dipanggil MixUp3D. Kaedah ini menambah kekangan fizikal berdasarkan MixUp 2D, menjadikan imej yang dijana lebih munasabah dan bertindih secara spatial. Khususnya, MixUp3D hanya melanggar kekangan perlanggaran objek dalam dunia fizikal, sambil memastikan imej yang dihasilkan mematuhi prinsip pengimejan dan mengelakkan sebarang kekaburan. Inovasi ini akan membawa lebih banyak kemungkinan dan prospek aplikasi kepada bidang penjanaan imej.
Hasil eksperimen
Kami akan membincangkan prestasi pengesanan kereta 3D monokular pada set ujian KITTI. Mengikut kedudukan KITTI, kaedah kami berada di bawah kesukaran sederhana. Dalam senarai di bawah, kami menyerlahkan hasil terbaik dalam huruf tebal dan hasil kedua dalam garis bawah. Untuk data tambahan, terdapat situasi berikut: 1) Kaedah menggunakan data titik awan LIDAR tambahan diwakili sebagai LIDAR. 2) Peta kedalaman atau model yang telah dilatih di bawah set data anggaran kedalaman lain digunakan, dilambangkan sebagai kedalaman. 3) Menggunakan anotasi bentuk padat yang disediakan oleh model CAD, diwakili sebagai CAD. 4) Menunjukkan bahawa tiada data tambahan digunakan, iaitu tiada.
Keputusan ujian set data pada Wamyo:
Penilaian silang set data model KITTI-val pada KITTI-val dan kereta val muka depan nuScenes
Atas ialah kandungan terperinci Aplikasi pemeriksaan sampel dalam latihan pengesanan 3D visual: MonoLSS. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Perintah shutdown CentOS adalah penutupan, dan sintaks adalah tutup [pilihan] [maklumat]. Pilihan termasuk: -h menghentikan sistem dengan segera; -P mematikan kuasa selepas penutupan; -r mulakan semula; -T Waktu Menunggu. Masa boleh ditentukan sebagai segera (sekarang), minit (minit), atau masa tertentu (HH: mm). Maklumat tambahan boleh dipaparkan dalam mesej sistem.

Dasar sandaran dan pemulihan Gitlab di bawah sistem CentOS untuk memastikan keselamatan data dan pemulihan, Gitlab pada CentOS menyediakan pelbagai kaedah sandaran. Artikel ini akan memperkenalkan beberapa kaedah sandaran biasa, parameter konfigurasi dan proses pemulihan secara terperinci untuk membantu anda menubuhkan strategi sandaran dan pemulihan GitLab lengkap. 1. Backup Manual Gunakan Gitlab-Rakegitlab: Backup: Buat Perintah untuk Melaksanakan Backup Manual. Perintah ini menyokong maklumat utama seperti repositori Gitlab, pangkalan data, pengguna, kumpulan pengguna, kunci, dan kebenaran. Fail sandaran lalai disimpan dalam direktori/var/opt/gitlab/sandaran. Anda boleh mengubah suai /etc /gitlab

Panduan Lengkap untuk Memeriksa Konfigurasi HDFS Dalam Sistem CentOS Artikel ini akan membimbing anda bagaimana untuk memeriksa konfigurasi dan menjalankan status HDFS secara berkesan pada sistem CentOS. Langkah -langkah berikut akan membantu anda memahami sepenuhnya persediaan dan operasi HDFS. Sahkan Pembolehubah Alam Sekitar Hadoop: Pertama, pastikan pembolehubah persekitaran Hadoop ditetapkan dengan betul. Di terminal, laksanakan arahan berikut untuk mengesahkan bahawa Hadoop dipasang dan dikonfigurasi dengan betul: Hadoopversion Semak fail konfigurasi HDFS: Fail konfigurasi teras HDFS terletak di/etc/hadoop/conf/direktori, di mana core-site.xml dan hdfs-site.xml adalah kritikal. gunakan

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Memasang MySQL pada CentOS melibatkan langkah -langkah berikut: Menambah sumber MySQL YUM yang sesuai. Jalankan YUM Pasang Perintah MySQL-Server untuk memasang pelayan MySQL. Gunakan perintah mysql_secure_installation untuk membuat tetapan keselamatan, seperti menetapkan kata laluan pengguna root. Sesuaikan fail konfigurasi MySQL seperti yang diperlukan. Tune parameter MySQL dan mengoptimumkan pangkalan data untuk prestasi.

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Perintah untuk memulakan semula perkhidmatan SSH ialah: Sistem Restart SSHD. Langkah -langkah terperinci: 1. Akses terminal dan sambungkan ke pelayan; 2. Masukkan arahan: SistemCtl Restart SSHD; 3. Sahkan Status Perkhidmatan: Status Sistem SSHD.

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat
