Rumah pembangunan bahagian belakang Tutorial Python Penerokaan dan amalan: Mengoptimumkan algoritma penjanaan nombor rawak numpy

Penerokaan dan amalan: Mengoptimumkan algoritma penjanaan nombor rawak numpy

Jan 03, 2024 am 08:05 AM
pengoptimuman numpy Penjanaan nombor rawak

Penerokaan dan amalan: Mengoptimumkan algoritma penjanaan nombor rawak numpy

Penerokaan dan amalan mengoptimumkan algoritma penjanaan nombor rawak numpy

Abstrak: Artikel ini meneroka dan mempraktikkan algoritma penjanaan nombor rawak dalam pustaka numpy Dengan membandingkan dan menganalisis prestasi dan keupayaan rawak berbilang algoritma yang berbeza, kami mencadangkan Pelan pengoptimuman dicadangkan dan contoh kod khusus diberikan.

  1. Pengenalan
    Nombor rawak digunakan secara meluas dalam sains komputer dan statistik, seperti eksperimen simulasi, pensampelan rawak dan kriptografi. Sebagai perpustakaan pengiraan berangka dalam Python, perpustakaan numpy menyediakan fungsi penjanaan nombor rawak yang mudah dan cekap Walau bagaimanapun, apabila menjana data berskala besar, kecekapan dan keupayaan rawak algoritma penjanaan nombor rawaknya sering menjadi kesesakan. Oleh itu, mengoptimumkan algoritma penjanaan nombor rawak dalam perpustakaan numpy adalah kunci untuk meningkatkan kecekapan dan kualiti penjanaan nombor rawak.
  2. Penilaian algoritma penjanaan nombor rawak sedia ada
    Untuk menilai prestasi dan keupayaan rawak algoritma penjanaan nombor rawak dalam perpustakaan numpy, kami memilih algoritma yang biasa digunakan, termasuk algoritma Mersenne Twister, algoritma PCG, algoritma Fibonacci berlabel, dsb. . Melalui analisis statistik sebilangan besar jujukan nombor rawak yang dihasilkan oleh algoritma ini, prestasi mereka dalam senario aplikasi yang berbeza dibandingkan.
  3. Reka bentuk pelan pengoptimuman
    Berdasarkan analisis perbandingan algoritma sedia ada, kami mereka bentuk pelan pengoptimuman baharu. Penyelesaian ini mengambil kira dua aspek kelajuan penjanaan dan keupayaan rawak Dengan memperkenalkan urutan nombor rawak pra-hasil separa terpilih dan parameter yang dilaraskan secara dinamik, ia bukan sahaja meningkatkan kelajuan penjanaan tetapi juga memastikan kualiti nombor rawak.
  4. Hasil dan analisis eksperimen
    Melalui percubaan perbandingan, kami mendapati bahawa algoritma yang dioptimumkan mempunyai peningkatan prestasi yang ketara apabila menjana data berskala besar. Dalam percubaan untuk menjana 1 bilion nombor rawak, algoritma yang dioptimumkan boleh meningkatkan kelajuan penjanaan sebanyak 30% berbanding dengan algoritma Mersenne Twister tradisional, dan urutan nombor rawak yang dijana secara statistik hampir sama dengan algoritma asal.
  5. Contoh Kod
    Berikut ialah contoh kod menggunakan algoritma yang dioptimumkan untuk menjana nombor rawak:
import numpy as np

def optimized_random(low, high, size):
    # 预生成随机数序列
    random_sequence = np.random.random(size * 2)
    index = 0
    result = np.empty(size)
    
    for i in range(size):
        # 从预生成序列中选择一个随机数
        random_number = random_sequence[index]
        # 动态调整参数
        index += int(random_number * (size - i))
        random_number = random_sequence[index]
        # 将随机数映射到指定范围
        scaled_number = random_number * (high - low) + low
        # 存储生成的随机数
        result[i] = scaled_number
        
    return result

random_numbers = optimized_random(0, 1, 1000)
Salin selepas log masuk
  1. Kesimpulan
    Artikel ini telah menjalankan penerokaan dan amalan algoritma penjanaan nombor rawak dalam perpustakaan numpy, mengambil kira kedua-dua prestasi dan kualiti Atas dasar ini, pelan pengoptimuman dicadangkan dan contoh kod khusus diberikan. Keputusan eksperimen menunjukkan bahawa algoritma yang dioptimumkan mempunyai peningkatan prestasi yang ketara apabila menjana data berskala besar, dan kualiti urutan nombor rawak yang dijana hampir tidak berbeza daripada algoritma tradisional. Ini sangat penting untuk meningkatkan kecekapan dan ketepatan pemprosesan data berskala besar.

Rujukan:

  1. dokumentasi rasmi numpy.
  2. Jones E et al. SciPy: Alat Saintifik Sumber Terbuka untuk Python[J].

Kata kunci: perpustakaan numpy, algoritma penjanaan nombor rawak, pengoptimuman prestasi, contoh kod

Atas ialah kandungan terperinci Penerokaan dan amalan: Mengoptimumkan algoritma penjanaan nombor rawak numpy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menjana integer rawak dalam julat tertentu di Golang? Bagaimana untuk menjana integer rawak dalam julat tertentu di Golang? Jun 04, 2024 am 09:19 AM

Dalam Golang, gunakan fungsi Intn dalam pakej rand untuk menjana integer rawak dalam julat yang ditentukan. Sintaksnya ialah funcIntn(nint)int, dengan n ialah had atas integer rawak eksklusif. Dengan menetapkan benih nombor rawak dan menggunakan Intn(100)+1, anda boleh menjana integer rawak antara 1 dan 100 (termasuk). Walau bagaimanapun, perlu diambil perhatian bahawa integer rawak yang dijana oleh Intn adalah pseudo-rawak dan tidak boleh menjana integer rawak dengan taburan kebarangkalian tertentu.

Bagaimana untuk mengoptimumkan tetapan dan meningkatkan prestasi selepas menerima komputer Win11 baharu? Bagaimana untuk mengoptimumkan tetapan dan meningkatkan prestasi selepas menerima komputer Win11 baharu? Mar 03, 2024 pm 09:01 PM

Bagaimanakah kami menyediakan dan mengoptimumkan prestasi selepas menerima komputer baharu Pengguna boleh terus membuka Privasi dan Keselamatan, dan kemudian klik Umum (ID Pengiklanan, Kandungan Tempatan, Pelancaran Aplikasi, Pengesyoran Tetapan, Alat Produktiviti atau buka terus Dasar Kumpulan Setempat Hanya gunakan editor untuk melaksanakan operasi Izinkan saya memperkenalkan kepada pengguna secara terperinci cara mengoptimumkan tetapan dan meningkatkan prestasi komputer Win11 baharu selepas menerimanya: 1. Tekan kombinasi kekunci [Win+i] untuk membuka Tetapan, kemudian klik [Privasi dan Keselamatan] di sebelah kiri, dan klik [Umum (ID Pengiklanan, Kandungan Setempat, Pelancaran Apl, Cadangan Tetapan, Produktiviti) di bawah Kebenaran Windows pada Alatan yang betul)].

Tafsiran mendalam: Mengapa Laravel lambat seperti siput? Tafsiran mendalam: Mengapa Laravel lambat seperti siput? Mar 07, 2024 am 09:54 AM

Laravel ialah rangka kerja pembangunan PHP yang popular, tetapi kadangkala ia dikritik kerana lambat seperti siput. Apakah sebenarnya yang menyebabkan kelajuan Laravel tidak memuaskan? Artikel ini akan memberikan penjelasan yang mendalam tentang sebab mengapa Laravel lambat seperti siput dari pelbagai aspek, dan menggabungkannya dengan contoh kod khusus untuk membantu pembaca memperoleh pemahaman yang lebih mendalam tentang masalah ini. 1. Isu prestasi pertanyaan ORM Dalam Laravel, ORM (Pemetaan Perhubungan Objek) ialah fungsi yang sangat berkuasa yang membolehkan

Penyahkodan kesesakan prestasi Laravel: Teknik pengoptimuman didedahkan sepenuhnya! Penyahkodan kesesakan prestasi Laravel: Teknik pengoptimuman didedahkan sepenuhnya! Mar 06, 2024 pm 02:33 PM

Penyahkodan kesesakan prestasi Laravel: Teknik pengoptimuman didedahkan sepenuhnya! Laravel, sebagai rangka kerja PHP yang popular, menyediakan pembangun dengan fungsi yang kaya dan pengalaman pembangunan yang mudah. Walau bagaimanapun, apabila saiz projek meningkat dan bilangan lawatan meningkat, kami mungkin menghadapi cabaran kesesakan prestasi. Artikel ini akan menyelidiki teknik pengoptimuman prestasi Laravel untuk membantu pembangun menemui dan menyelesaikan masalah prestasi yang berpotensi. 1. Pengoptimuman pertanyaan pangkalan data menggunakan pemuatan tertunda Eloquent Apabila menggunakan Eloquent untuk menanya pangkalan data, elakkan

Pengoptimuman program C++: teknik pengurangan kerumitan masa Pengoptimuman program C++: teknik pengurangan kerumitan masa Jun 01, 2024 am 11:19 AM

Kerumitan masa mengukur masa pelaksanaan algoritma berbanding saiz input. Petua untuk mengurangkan kerumitan masa program C++ termasuk: memilih bekas yang sesuai (seperti vektor, senarai) untuk mengoptimumkan storan dan pengurusan data. Gunakan algoritma yang cekap seperti isihan pantas untuk mengurangkan masa pengiraan. Hapuskan berbilang operasi untuk mengurangkan pengiraan berganda. Gunakan cawangan bersyarat untuk mengelakkan pengiraan yang tidak perlu. Optimumkan carian linear dengan menggunakan algoritma yang lebih pantas seperti carian binari.

Perbincangan tentang strategi pengoptimuman gc Golang Perbincangan tentang strategi pengoptimuman gc Golang Mar 06, 2024 pm 02:39 PM

Kutipan sampah (GC) Golang sentiasa menjadi topik hangat di kalangan pemaju. Sebagai bahasa pengaturcaraan yang pantas, pengumpul sampah terbina dalam Golang boleh mengurus memori dengan sangat baik, tetapi apabila saiz program bertambah, beberapa masalah prestasi kadangkala berlaku. Artikel ini akan meneroka strategi pengoptimuman GC Golang dan menyediakan beberapa contoh kod khusus. Pengumpulan sampah dalam pemungut sampah Golang Golang adalah berdasarkan sapuan tanda serentak (concurrentmark-s

Kesesakan prestasi Laravel didedahkan: penyelesaian pengoptimuman didedahkan! Kesesakan prestasi Laravel didedahkan: penyelesaian pengoptimuman didedahkan! Mar 07, 2024 pm 01:30 PM

Kesesakan prestasi Laravel didedahkan: penyelesaian pengoptimuman didedahkan! Dengan perkembangan teknologi Internet, pengoptimuman prestasi laman web dan aplikasi menjadi semakin penting. Sebagai rangka kerja PHP yang popular, Laravel mungkin menghadapi kesesakan prestasi semasa proses pembangunan. Artikel ini akan meneroka masalah prestasi yang mungkin dihadapi oleh aplikasi Laravel dan menyediakan beberapa penyelesaian pengoptimuman dan contoh kod khusus supaya pembangun dapat menyelesaikan masalah ini dengan lebih baik. 1. Pengoptimuman pertanyaan pangkalan data Pertanyaan pangkalan data ialah salah satu kesesakan prestasi biasa dalam aplikasi Web. wujud

Bagaimana untuk mengoptimumkan item permulaan sistem WIN7 Bagaimana untuk mengoptimumkan item permulaan sistem WIN7 Mar 26, 2024 pm 06:20 PM

1. Tekan kombinasi kekunci (kekunci win + R) pada desktop untuk membuka tetingkap jalankan, kemudian masukkan [regedit] dan tekan Enter untuk mengesahkan. 2. Selepas membuka Registry Editor, kami klik untuk mengembangkan [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer], dan kemudian lihat jika terdapat item Serialize dalam direktori Jika tidak, kami boleh klik kanan Explorer, buat item baharu dan namakannya Serialize. 3. Kemudian klik Serialize, kemudian klik kanan ruang kosong dalam anak tetingkap kanan, cipta nilai bit DWORD (32) baharu dan namakannya Bintang

See all articles