MySQL Order By Rand()效率【转载】
最近由于需要大概研究了一下MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。
但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,仍然可以通过ORDER BY RAND()来实现随机。
但是真正测试一下才发现这样效率非常低。一个15万余条的库,查询5条数据,居然要8秒以上。查看官方手册,也说rand()放在ORDER BY 子句中会被执行多次,自然效率及很低。
You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY
would evaluate the column multiple times.
搜索Google,网上基本上都是查询max(id) * rand()来随机获取数据。
SELECT * <br>FROM `table` AS t1 JOIN (SELECT ROUND(RAND() * (SELECT MAX(id) FROM `table`)) AS id) AS t2 <br>WHERE t1.id >= t2.id <br>ORDER BY t1.id ASC LIMIT 5;
但是这样会产生连续的5条记录。解决办法只能是每次查询一条,查询5次。即便如此也值得,因为15万条的表,查询只需要0.01秒不到。
下面的语句采用的是JOIN,mysql的论坛上有人使用
SELECT * <br>FROM `table` <br>WHERE id >= (SELECT FLOOR( MAX(id) * RAND()) FROM `table` ) <br>ORDER BY id LIMIT 1;
我测试了一下,需要0.5秒,速度也不错,但是跟上面的语句还是有很大差距。总觉有什么地方不正常。
于是我把语句改写了一下。
SELECT * <br>FROM `table` <br>WHERE id >= (SELECT FLOOR( MAX(id) * RAND()) FROM `table` ) <br>ORDER BY id LIMIT 1;
这下,效率又提高了,查询时间只有0.01秒
最后,再把语句完善一下,加上MIN(id)的判断。我在最开始测试的时候,就是因为没有加上MIN(id)的判断,结果有一半的时间总是查询到表中的前面几行。完整查询语句是:
1 SELECT * FROM `table` <br>2 WHERE id >= (SELECT floor( RAND() * ((SELECT MAX(id) FROM `table`)-(SELECT MIN(id) FROM `table`)) + (SELECT MIN(id) FROM `table`)))<br>3 ORDER BY id LIMIT 1;
SELECT *
FROM `table` AS t1 JOIN (SELECT ROUND(RAND() * ((SELECT MAX(id) FROM `table`)-(SELECT MIN(id) FROM `table`))+(SELECT MIN(id) FROM `table`)) AS id) AS t2
WHERE t1.id >= t2.id
ORDER BY t1.id LIMIT 1;
最后在php中对这两个语句进行分别查询10次,
前者花费时间 0.147433 秒
后者花费时间 0.015130 秒
看来采用JOIN的语法比直接在WHERE中使用函数效率还要高很多。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.
