Using UDFs for Geo-Distance Search in MySQL_MySQL
06.25.2014 | 8 views |
Related MicroZone Resources
Proven in Production: Clustrix Case Studies
INFOGRAPHIC: The Future of the Database
Clustrix Whitepapers
What We Offer: Clustrix Features
Like this piece? Share it with your friends:
| More
Originally written by Alexander Rubin
In my previous post about geo-spatial search in MySQL I described (along with other things) how to use geo-distance functions. In this post I will describe the geo-spatial distance functions in more details.
If you need to calculate an exact distance between 2 points on Earth in MySQL (very common for geo-enabled applications) you have at least 3 choices.
- Use stored function and implement haversine formula
- Use UDF (user defined function) for haversine (see below)
- In MySQL 5.6 you can use st_distance function (newly documented), however, you will get the distance on plane and not on earth; the value returned will be good for sorting by distance but will not represent actual miles or kilometers.
MySQL stored function for calculating distance on Earth
I previously gave an example for a MySQL-stored function which implements the haversine formula. However, the approach I used was not very precise: it was optimized for speed. If you need a more precise haversine formula implementation you can use this function (result will be in miles):
delimiter //create DEFINER = CURRENT_USER function haversine_distance_sp (lat1 double, lon1 double, lat2 double, lon2 double) returns double begin declare R int DEFAULT 3958.76; declare phi1 double; declare phi2 double; declare d_phi double; declare d_lambda double; declare a double; declare c double; declare d double; set phi1 = radians(lat1); set phi2 = radians(lat2); set d_phi = radians(lat2-lat1); set d_lambda = radians(lon2-lon1); set a = sin(d_phi/2) * sin(d_phi/2) + cos(phi1) * cos(phi2) * sin(d_lambda/2) * sin(d_lambda/2); set c = 2 * atan2(sqrt(a), sqrt(1-a)); set d = R * c; return d; end;//delimiter ;
(the algorithm is based on the standard formula, I’ve used the well-known Movable Type scripts calculator )
This is a slower implementation as it uses arctangent , however it is more precise.
MySQL UDF for Haversine distance
Another approach, which will give you much more performance is to use UDF. There are a number of implementations, I’ve used lib_mysqludf_haversine .
Here is the simple steps to install it in MySQL 5.6 (will also work with earlier versions):
$ wget 'https://github.com/lucasepe/lib_mysqludf_haversine/archive/master.zip'$ unzip master.zip$ cd lib_mysqludf_haversine-master/$ makemysql> show global variables like 'plugin%';+---------------+-------------------------+| Variable_name | Value |+---------------+-------------------------+| plugin_dir| /usr/lib64/mysql/plugin |+---------------+-------------------------+1 row in set (0.00 sec)$ sudo cp lib_mysqludf_haversine.so /usr/lib64/mysql/plugin/mysql> CREATE FUNCTION haversine_distance RETURNS REAL SONAME 'lib_mysqludf_haversine.so';mysql> select haversine_distance(37.470295464, -122.572938858498, 37.760150536, -122.20701914150199, 'mi') as dist_in_miles;+---------------+| dist_in_miles |+---------------+| 28.330467 |+---------------+1 row in set (0.00 sec)
Please note:
- Make sure you have the mysql-devel or percona-server-devel package installed (MySQL development libraries) before installing.
- You will need to specify the last parameter to be “mi” if you want to get the results in miles, otherwise it will give you kilometers.
MySQL ST_distance function
In MySQL 5.6 you can use ST_distance function:
mysql> select st_distance(point(37.470295464, -122.572938858498), point( 37.760150536, -122.20701914150199)) as distance_plane;+---------------------+| distance_plane|+---------------------+| 0.46681174155173943 |+---------------------+1 row in set (0.00 sec)
As we can see it does not give us an actual distance in mile or kilometers as it does not take into account that we have latitude and longitude, rather than X and Y on plane.
Geo Distance Functions Performance
The stored procedures and functions in MySQL are known to be slower, especially with trigonometrical functions. I’ve did a quick test, using MySQL function benchmark .
First I set 2 points (10 miles from SFO airport)
set @rlon1 = 122.572938858498;set @rlat1 = 37.470295464;set @rlon2 = -122.20701914150199;set @rlat2 = 37.760150536;
Next I use 4 function to benchmark:
- Less precise stored function (haversine)
- More precise stored function (haversine)
- UDF for haversine
- MySQL 5.6 native ST_distance (plane)
The benchmark function will execute the above function 100000 times.
Here are the results:
mysql>select benchmark(100000,haversine_old_sp(@rlat1, @rlon1, @rlat2, @rlon2)) as less_precise_mysql_stored_proc;+--------------------------------+| less_precise_mysql_stored_proc |+--------------------------------+|0 |+--------------------------------+1 row in set (1.46 sec)mysql>select benchmark(100000,haversine_distance_sp(@rlat1, @rlon1, @rlat2, @rlon2)) as more_precise_mysql_stored_proc;+--------------------------------+| more_precise_mysql_stored_proc |+--------------------------------+|0 |+--------------------------------+1 row in set (2.58 sec)mysql>select benchmark(100000,haversine_distance(@rlat1, @rlon1, @rlat2, @rlon2, 'mi')) as udf_haversine_function;+------------------------+| udf_haversine_function |+------------------------+|0 |+------------------------+1 row in set (0.17 sec)mysql> select benchmark(100000, st_distance(point(@rlat1, @rlon1), point(@rlat2, @rlon1))) as mysql_builtin_st_distance;+---------------------------+| mysql_builtin_st_distance |+---------------------------+| 0 |+---------------------------+1 row in set (0.10 sec)
As we can see the UDF gives much faster response time (which is comparable to built-in function).
Benchmark chart (smaller the better)
Conclusion
The lib_mysqludf_haversine UDF provides a good function for geo-distance search in MySQL. Please let me know in the comments what geo-distance functions or approaches do you use in your applications.
Published at DZone with permission ofPeter Zaitsev, author and DZone MVB. ( source )
(Note: Opinions expressed in this article and its replies are the opinions of their respective authors and not those of DZone, Inc.)
Tags:- geo-distance search
- MySQL
- Tips and Tricks
- SQL
- Tools & Methods

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel membincangkan menggunakan kunci asing untuk mewakili hubungan dalam pangkalan data, memberi tumpuan kepada amalan terbaik, integriti data, dan perangkap umum untuk dielakkan.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.

Artikel membincangkan mendapatkan MySQL terhadap suntikan SQL dan serangan kekerasan menggunakan pernyataan yang disediakan, pengesahan input, dan dasar kata laluan yang kuat. (159 aksara)
