Bume in MySQL_MySQL
Baumstrukturen sind weit verbereitet in der EDV. Jedes aktuelle Betriebssystem kennt "Verzeichnisse" oder "Ordner" die beliebig verschachtelt werden können und auch viele moderne Applikationen beschränken sich nicht mehr auf eine feste Anzahl von Ebenen. Aber wie legt man so einen Baum in einer (SQL-)Datenbank ab?
Kenne Deine Eltern...
Mir waren bisher zwei Modelle bekannt:ParentundChilds. Beim Parent-Modell enthält jede Datenbankzeile einfach die ID der übergeordneten Zeile. So ein Baum lässt sich ziemlich einfach von einem Blatt zum Stamm durchlaufen, weil die nächste ID in jedem Datensatz enthalten ist. Außerdem ist ein Parent-Baum ziemlich resistent gegen Inkonsistenzen und lässt sich sehr schnell schreiben. Selbst das Löschen geht recht schnell, weil zunächst nur der tatsächlich betroffene Datensatz gelöscht werden muss. Im Hintergrund oder per regelmäßigem (Cron-)Job können dann alle Elemente gelöscht werden, deren Parentnicht mehr existiert. So räumt sich die Datenbank von selbst auf und der aktuelle Konsistenzzustand ist jederzeit bekannt. Alternativ kann dieParent-Spalte auch mit einem Fremdschlüssel auf die gleiche Tabelle belegt werden (sofern dies unterstützt wird), dann übernimmt der Datenbankserver die Konsistanzprüfung.
...oder Kinder
Die Childs-Variante lässt sich dagegen schneller von der Wurzel zu den Blättern lesen, bringt aber einige Probleme mit sich. Jede Zeile muss eine Liste der IDs ihrer Kinder enthalten - entweder in einer Spalte oder über eine Mapping-Tabelle (die Probleme mit zu vielen Kindelementen vermeidet und sich leichter durchsuchen lässt). Um das Eltern-Element zu bestimmen, müssen im schlimmsten Fall die Childs-Listen aller anderen Elemente durchsucht werden. Ein Element kann dabei mehrere Eltern oder sogar sich selbst als Elternelement haben. Ob eine solche Konstellation gewünscht ist, hängt von der Applikation ab.
Eine wissenschaftliche Lösung
Eine weitere Variante, so habe ich heute gelernt, ist das Nested SetsModell. Es ist nicht so einfach verständlich wie die vorgenannten, dafür lassen sich alle Arten von Lese- und Statistikoperationen sehr schnell ausführen. Arne Klempert beschreibt denAufbau einesNested Sets Baum in seinem gut geschriebenen Artikel. Seine Benchmark-Ergebnisse möchte ich allerdings anzweifeln - in einem normalen Parent-Modell sollte die Parent-Spalte indiziert sein - damit sollte sich die Query-Zeit massiv verbessern lassen. Zumindest beim Path-Modell wären auch leicht alle möglichen Path-Werte in einem Query abrufbar.
Praktische Umsetzung
Das Modell liest sich für mich wie eine Erfindung der theoretischen Informatik (oder Mathematik). Bei vielen Lese- und Statistikoperationen halte ich es auch für die beste Lösung, allerdings besteht meine aktuelle Problemstellung aus mehr Schreib- als Leseoperationen und einem sehr großen Datenbestand.
Dabei ist es nicht möglich, die komplette Tabelle zu sperren und viele Zeilen zu ändern um eine neue Zeile einzufügen oder zu löschen. Eine Transaktion würde das Risiko von inkonsistenten Daten zwar reduzieren, aber effektiv trotzdem große Teile der Tabelle locken. Bei row-based-locks können dann je nach Datenbank sogar die Anzahl der im System verfügbaren Locks überschritten werden.

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Artikel ini membincangkan menggunakan pernyataan jadual Alter MySQL untuk mengubah suai jadual, termasuk menambah/menjatuhkan lajur, menamakan semula jadual/lajur, dan menukar jenis data lajur.

Artikel membincangkan mengkonfigurasi penyulitan SSL/TLS untuk MySQL, termasuk penjanaan sijil dan pengesahan. Isu utama menggunakan implikasi keselamatan sijil yang ditandatangani sendiri. [Kira-kira aksara: 159]

Artikel membincangkan strategi untuk mengendalikan dataset besar di MySQL, termasuk pembahagian, sharding, pengindeksan, dan pengoptimuman pertanyaan.

Artikel membincangkan alat MySQL GUI yang popular seperti MySQL Workbench dan PHPMyAdmin, membandingkan ciri dan kesesuaian mereka untuk pemula dan pengguna maju. [159 aksara]

Artikel ini membincangkan jadual menjatuhkan di MySQL menggunakan pernyataan Jadual Drop, menekankan langkah berjaga -jaga dan risiko. Ia menyoroti bahawa tindakan itu tidak dapat dipulihkan tanpa sandaran, memperincikan kaedah pemulihan dan bahaya persekitaran pengeluaran yang berpotensi.

Artikel membincangkan menggunakan kunci asing untuk mewakili hubungan dalam pangkalan data, memberi tumpuan kepada amalan terbaik, integriti data, dan perangkap umum untuk dielakkan.

Artikel ini membincangkan membuat indeks pada lajur JSON dalam pelbagai pangkalan data seperti PostgreSQL, MySQL, dan MongoDB untuk meningkatkan prestasi pertanyaan. Ia menerangkan sintaks dan faedah mengindeks laluan JSON tertentu, dan menyenaraikan sistem pangkalan data yang disokong.

Artikel membincangkan mendapatkan MySQL terhadap suntikan SQL dan serangan kekerasan menggunakan pernyataan yang disediakan, pengesahan input, dan dasar kata laluan yang kuat. (159 aksara)
