MySQL-5.7 improves DML oriented workloads_MySQL
In MySQL 5.7, we have improved the scalability of DML oriented workloads in InnoDB. This is the result of a number of changes, which I will outline below.
(1) Fix index->lock contention
This RW lock protects all indexes, both the cluster and the secondary indexes.
Before 5.7, every modifications to non-leaf pages (every modifications for the tree structure) required to exclude the other threads’ access to the whole index by X-lock, and every concurrent accessing the index tree were blocked. This was the major reason of the index->lock contention in concurrent DML workloads.
In MySQL 5.7 concurrent access is now permitted to the non-leaf pages (internal nodes of the B+Tree) as long as they are not related to the concurrent tree structure modifications (WL#6326). This change reduces the major point of contention.
(2) Page cleaner thread optimizations
In MySQL 5.6, weintroduced a dedicated page cleaner threadto handle background operations including flushing dirty pages from the buffer pool to storage and keeping number of free pages. By separating this task to its own thread, user threads are freed from doing this additional work. This has improved the CPU cost and should solve some cases of CPU bound problems. However, there still existed a scenario where in some DML oriented workloads there were too many tasks for a single page cleaner thread to keep up with. This could result in a reduction in performance as user threads were required to flush and keep sufficient pages free.
In MySQL 5.7, there have been two improvements in this area:
- The buffer pool list scans (e.g. flush_list, LRU) for flushing have been optimized and reduced in cost (WL#7047). This also improves the user threads’ flush/evict page operation (to obtain free page), which is necessary in the scenario that the page cleaner thread is too far behind. This change lowers the performance risk when the page cleaner is not able to perform enough work due to sub-optimal configuration settings.
- Multiple page cleaner threads are now supported, allowing these operations to occur in parallel.WL#6642.
(3) log_sys->mutex optimization
MySQL 5.7 reduces the impact oflog_sys->mutex, which is held to control access to the log buffer and log writing. The impact of this change is most visible wheninnodb_flush_log_at_trx_commit=2, because the log writing without sync is not blocked waiting for a sync by the change.
(4) Avoiding the ‘read-on-write’ during transaction log writing
The InnoDB transaction log is written in block sizes of 512 bytes, which is often smaller than the block-size of the underlying device or file system. In the event that the transaction log is not memory-resident in an OS cache, a read may be required to be able to load the remainder of the underlying device’s block, write in place the InnoDB transaction log page, and then write out the underlying page. We refer to this problem as a read-on-write to save the contents of the transaction log which is not needed to save.
In MySQL 5.7 we address this problem by adding a new option ofinnodb_log_write_ahead_size. This allows the user to effectively pad write operations to complete the full block of the underlying device or file system, negating the need for a read-on-write modification. This change results in better stability of log throughput as there will no longer be a situation where some writes are effectively cached and others will not be cached.
We continue to investigate other ways of addressing this problem. For example, on an SSD, deallocation likeFALLOC_FL_PUNCH_HOLEmight be better if it is supported.
(5) Future improvements
We are continuing to focus on improving DML performance for 5.7. Some of our next areas of research include:
- Implementing improvements to the adaptive flushing algorithm (suggestion by Dimitri Kravtchuk)
- Setting a thread priority for the page_cleaner (in Linux for now)
- Addressing an issue where an overload of flushing can occur when the oldest modification reaches max_modified_age_sync. (lowers risk to reach max_modified_age_sync; proper throughput along with flushing around max_modified_age_sync)
- Introducing page fill factor to control frequency of merge/split of the index pages
Important Change in Behavior: MySQL 5.7 will be more sensitive for flushing related options
As the result of the above improvements (including the future works), MySQL 5.7 has will respect configuration settings much closer and adjusting settings to reflect underlying hardware device(s) IO capabilities will be more important to optimize throughput. For example: settings that are too conservative may prevent the page cleaner thread from competing enough work.
innodb_io_capacity_max≤ [actual max write pages/s]
As the result of the adjustments, 5.7 will always try to respectinnodb_io_capacity_maxfor flush_list flushing. If the amount of outstanding work is too large, the page cleaner might spend too much time performing flush_list flushing and not complete some of the other tasks required of it. The actual maximum “write pages/s” can be confirmed by watching PAGES_WRITTEN_RATE value ofINFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS, for example.
innodb_buf_pool_instances×innodb_lru_scan_depth≥ [actual max read page/s]
The settinginnodb_lru_scan_depthcan now be considered as the target of free pages for each buffer pool instance at flushing operation of the page cleaner. A single round of page cleaner tasks is also intended to be completed within one second. So, “read page/s” is affected byinnodb_buf_pool_instances×innodb_lru_scan_depth. Settinginnodb_lru_scan_depthto a very high high value is not recommended, because the free page keeping batch might take too long. (* The actual maximum “read pages/s” can be confirmed by watching PAGES_READ_RATE value ofINFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS, also for example.)

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Pengimbasan jadual penuh mungkin lebih cepat dalam MySQL daripada menggunakan indeks. Kes -kes tertentu termasuk: 1) jumlah data adalah kecil; 2) apabila pertanyaan mengembalikan sejumlah besar data; 3) Apabila lajur indeks tidak selektif; 4) Apabila pertanyaan kompleks. Dengan menganalisis rancangan pertanyaan, mengoptimumkan indeks, mengelakkan lebih banyak indeks dan tetap mengekalkan jadual, anda boleh membuat pilihan terbaik dalam aplikasi praktikal.

Ya, MySQL boleh dipasang pada Windows 7, dan walaupun Microsoft telah berhenti menyokong Windows 7, MySQL masih serasi dengannya. Walau bagaimanapun, perkara berikut harus diperhatikan semasa proses pemasangan: Muat turun pemasang MySQL untuk Windows. Pilih versi MySQL yang sesuai (komuniti atau perusahaan). Pilih direktori pemasangan yang sesuai dan set aksara semasa proses pemasangan. Tetapkan kata laluan pengguna root dan simpan dengan betul. Sambung ke pangkalan data untuk ujian. Perhatikan isu keserasian dan keselamatan pada Windows 7, dan disyorkan untuk menaik taraf ke sistem operasi yang disokong.

Keupayaan carian teks penuh InnoDB sangat kuat, yang dapat meningkatkan kecekapan pertanyaan pangkalan data dan keupayaan untuk memproses sejumlah besar data teks. 1) InnoDB melaksanakan carian teks penuh melalui pengindeksan terbalik, menyokong pertanyaan carian asas dan maju. 2) Gunakan perlawanan dan terhadap kata kunci untuk mencari, menyokong mod boolean dan carian frasa. 3) Kaedah pengoptimuman termasuk menggunakan teknologi segmentasi perkataan, membina semula indeks dan menyesuaikan saiz cache untuk meningkatkan prestasi dan ketepatan.

Perbezaan antara indeks clustered dan indeks bukan cluster adalah: 1. Klustered Index menyimpan baris data dalam struktur indeks, yang sesuai untuk pertanyaan oleh kunci dan julat utama. 2. Indeks Indeks yang tidak berkumpul indeks nilai utama dan penunjuk kepada baris data, dan sesuai untuk pertanyaan lajur utama bukan utama.

MySQL adalah sistem pengurusan pangkalan data sumber terbuka. 1) Buat Pangkalan Data dan Jadual: Gunakan perintah Createdatabase dan Createtable. 2) Operasi Asas: Masukkan, Kemas kini, Padam dan Pilih. 3) Operasi lanjutan: Sertai, subquery dan pemprosesan transaksi. 4) Kemahiran Debugging: Semak sintaks, jenis data dan keizinan. 5) Cadangan Pengoptimuman: Gunakan indeks, elakkan pilih* dan gunakan transaksi.

Dalam pangkalan data MySQL, hubungan antara pengguna dan pangkalan data ditakrifkan oleh kebenaran dan jadual. Pengguna mempunyai nama pengguna dan kata laluan untuk mengakses pangkalan data. Kebenaran diberikan melalui perintah geran, sementara jadual dibuat oleh perintah membuat jadual. Untuk mewujudkan hubungan antara pengguna dan pangkalan data, anda perlu membuat pangkalan data, membuat pengguna, dan kemudian memberikan kebenaran.

MySQL menyokong empat jenis indeks: B-Tree, Hash, Full-Text, dan Spatial. 1. B-Tree Index sesuai untuk carian nilai yang sama, pertanyaan dan penyortiran. 2. Indeks hash sesuai untuk carian nilai yang sama, tetapi tidak menyokong pertanyaan dan penyortiran pelbagai. 3. Indeks teks penuh digunakan untuk carian teks penuh dan sesuai untuk memproses sejumlah besar data teks. 4. Indeks spatial digunakan untuk pertanyaan data geospatial dan sesuai untuk aplikasi GIS.

MySQL dan Mariadb boleh wujud bersama, tetapi perlu dikonfigurasikan dengan berhati -hati. Kuncinya adalah untuk memperuntukkan nombor port dan direktori data yang berbeza untuk setiap pangkalan data, dan menyesuaikan parameter seperti peruntukan memori dan saiz cache. Konfigurasi sambungan, konfigurasi aplikasi, dan perbezaan versi juga perlu dipertimbangkan dan perlu diuji dengan teliti dan dirancang untuk mengelakkan perangkap. Menjalankan dua pangkalan data secara serentak boleh menyebabkan masalah prestasi dalam situasi di mana sumber terhad.
