


Ringkasan fungsi yang biasa digunakan dalam perpustakaan Numpy: alat yang berkuasa untuk analisis dan pemodelan data
Numpy ialah salah satu perpustakaan matematik yang paling biasa digunakan dalam Python, yang menyepadukan banyak fungsi dan operasi matematik terbaik. Numpy digunakan secara meluas, termasuk statistik, algebra linear, pemprosesan imej, pembelajaran mesin, rangkaian saraf dan bidang lain. Dari segi analisis dan pemodelan data, Numpy adalah salah satu alat yang sangat diperlukan. Artikel ini akan berkongsi fungsi matematik yang biasa digunakan dalam Numpy, serta kod sampel untuk menggunakan fungsi ini untuk melaksanakan analisis dan pemodelan data.
1 Buat tatasusunan
Gunakan fungsi array()
dalam Numpy untuk mencipta contoh kod: array()
函数可以创建一个数组,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr)
这会输出 [1 2 3 4 5],表示创建了一个一维数组。
我们还可以创建一个二维数组,代码示例:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr)
这会输出:
[[1 2 3] [4 5 6]]
表示创建了一个二维数组。
二、数组属性
使用Numpy中的ndim
、shape
和size
属性可以获取数组的维度、形状和元素个数,代码示例:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) print(arr.ndim) # 输出 2,表示数组是二维的 print(arr.shape) # 输出 (2, 3),表示数组有2行3列 print(arr.size) # 输出 6,表示数组有6个元素
三、数组的运算
Numpy数组可以进行加、减、乘、除等运算。首先看一下给数组加一个标量的运算,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr + 2) # 输出 [3 4 5 6 7]
表示数组中的每个元素都加上了2。
接下来是两个数组相加的运算,代码示例:
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) print(arr1 + arr2) # 输出 [5 7 9]
表示两个数组中对应的元素相加。
Numpy还提供了一些特定的运算,例如:
平方运算:使用
power()
函数,代码示例:import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(np.power(arr, 2)) # 输出 [ 1 4 9 16 25]
Salin selepas log masuk这表示数组中的每个元素都平方了。
开方运算:使用
sqrt()
函数,代码示例:import numpy as np arr = np.array([1, 4, 9, 16, 25]) print(np.sqrt(arr)) # 输出 [1. 2. 3. 4. 5.]
Salin selepas log masuk这表示数组中的每个元素都开方了。
求和:使用
sum()
函数,代码示例:import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(np.sum(arr)) # 输出 15
Salin selepas log masuk这表示数组中的所有元素求和。
求最大值和最小值:使用
max()
和min()
函数,代码示例:import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(np.max(arr)) # 输出 5,表示数组中的最大值 print(np.min(arr)) # 输出 1,表示数组中的最小值
Salin selepas log masuk
四、数组的索引和切片
我们可以使用下标来访问数组中的元素,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[0]) # 输出 1,表示数组中的第一个元素
我们还可以对数组进行切片操作,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[1:4]) # 输出 [2 3 4],表示从数组中取出第2个到第4个元素
五、数组形状的变换
Numpy中提供了一些函数用于改变数组的形状,其中之一是reshape()
函数。我们可以使用reshape()
函数重塑数组的形状,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr.reshape(5, 1))
这会返回一个形状为(5, 1)的二维数组:
[[1] [2] [3] [4] [5]]
六、数组的合并与拆分
Numpy中提供了一些函数用于合并和拆分数组。
我们可以使用concatenate()
函数将两个数组沿着某个维度合并,代码示例:
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) print(np.concatenate((arr1, arr2))) # 输出 [1 2 3 4 5 6]
我们还可以使用vstack()
和hstack()
函数将两个数组水平或垂直堆叠在一起,代码示例:
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) # 垂直堆叠 print(np.vstack((arr1, arr2))) # 输出 [[1 2 3] [4 5 6]] # 水平堆叠 print(np.hstack((arr1, arr2))) # 输出 [1 2 3 4 5 6]
我们还可以使用split()
函数将一个数组拆分成多个数组,代码示例:
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(np.split(arr, 5)) # 输出 [array([1]), array([2]), array([3]), array([4]), array([5])]
这会将数组拆分成5个一维数组,每个数组中只包含一个元素。
七、综合示例
现在,我们将使用Numpy中的函数实现一个简单的数据分析和建模的例子。
示例:假设你有100个学生的成绩,你想计算他们的平均成绩、最高成绩和最低成绩。
首先,我们用random()
函数生成100个随机数,并使用mean()
、max()
和min()
函数计算它们的平均值、最高值和最低值,代码示例:
import numpy as np grades = np.random.randint(50, 100, 100) # 生成50到100之间的100个随机数 print("平均成绩:", np.mean(grades)) print("最高成绩:", np.max(grades)) print("最低成绩:", np.min(grades))
接下来,我们将使用histogram()
函数生成一个成绩的直方图,代码示例:
import matplotlib.pyplot as plt import numpy as np grades = np.random.randint(50, 100, 100) # 生成50到100之间的100个随机数 hist, bins = np.histogram(grades, bins=10, range=(50, 100)) plt.hist(grades, bins=10, range=(50, 100)) plt.show()
最后,我们将使用percentile()
import numpy as np grades = np.random.randint(50, 100, 100) # 生成50到100之间的100个随机数 print("90%的成绩高于:", np.percentile(grades, 90))
ndim
, shape
dan size
dalam Numpy untuk mendapatkan dimensi, bentuk dan bilangan elemen tatasusunan , Contoh kod: 🎜rrreee🎜 3. Operasi tatasusunan 🎜🎜 Tatasusunan numpy boleh melakukan operasi seperti tambah, tolak, darab dan bahagi. Mula-mula, mari kita lihat operasi menambah skalar pada tatasusunan Contoh kod: 🎜rrreee🎜 bermakna 2 ditambahkan pada setiap elemen dalam tatasusunan. 🎜🎜Langkah seterusnya ialah operasi menambah dua tatasusunan contoh: 🎜rrreee🎜 bermaksud menambah elemen yang sepadan dalam dua tatasusunan. 🎜🎜Numpy juga menyediakan beberapa operasi khusus, seperti: 🎜- 🎜Operasi segi empat sama: gunakan fungsi
power()
, contoh kod: 🎜rrreee🎜Ini bermakna setiap elemen dalam tatasusunan Unsur-unsur adalah kuasa dua. 🎜 - 🎜Kendalian punca kuasa dua: Gunakan fungsi
sqrt()
, contoh kod: 🎜rrreee🎜Ini bermakna setiap elemen dalam tatasusunan telah diduakan. 🎜 - 🎜Jumlah: Gunakan fungsi
sum()
, contoh kod: 🎜rrreee🎜Ini bermakna menjumlahkan semua elemen dalam tatasusunan. 🎜 - 🎜Cari nilai maksimum dan minimum: gunakan fungsi
max()
danmin()
, contoh kod: 🎜rrreee 🎜4. Pengindeksan dan penghirisan tatasusunan🎜🎜Kita boleh menggunakan subskrip untuk mengakses elemen dalam tatasusunan, contoh kod: 🎜rrreee🎜Kita juga boleh menghiris tatasusunan, contoh kod: 🎜rrreee🎜5 🎜Numpy menyediakan beberapa fungsi untuk menukar bentuk tatasusunan, salah satunya ialah fungsi
reshape()
. Kita boleh menggunakan fungsi reshape()
untuk membentuk semula contoh kod: 🎜rrreee🎜Ini akan mengembalikan tatasusunan dua dimensi dengan bentuk (5, 1): 🎜rrreee🎜 6. Menggabungkan. of Arrays & Splitting 🎜🎜Numpy menyediakan beberapa fungsi untuk menggabungkan dan membelah tatasusunan. 🎜🎜Kita boleh menggunakan fungsi concatenate()
untuk menggabungkan dua tatasusunan sepanjang dimensi tertentu, contoh kod: 🎜rrreee🎜Kita juga boleh menggunakan vstack()
dan hstack()
menyusun dua tatasusunan bersama-sama secara mendatar atau menegak, contoh kod: 🎜rrreee🎜Kita juga boleh menggunakan fungsi split()
untuk memisahkan tatasusunan kepada berbilang tatasusunan , contoh kod: 🎜rrreee🎜Ini akan membahagi tatasusunan kepada 5 tatasusunan satu dimensi, setiap satu mengandungi hanya satu elemen. 🎜🎜7. Contoh Komprehensif🎜🎜Kini, kami akan menggunakan fungsi dalam Numpy untuk melaksanakan analisis data dan contoh pemodelan. 🎜🎜Contoh: Katakan anda mempunyai markah 100 pelajar dan anda ingin mengira skor purata, markah tertinggi dan markah terendah mereka. 🎜🎜Pertama, kami menggunakan fungsi random()
untuk menjana 100 nombor rawak dan menggunakan min()
, max()
dan Fungsi min()
mengira nilai purata, tertinggi dan terendahnya, contoh kod: 🎜rrreee🎜Seterusnya, kami akan menggunakan fungsi histogram()
untuk menjana histogram skor, Kod contoh: 🎜rrreee🎜Akhirnya, kami akan menggunakan fungsi percentile()
untuk mengira peratusan gred contoh: 🎜rrreee🎜Di atas ialah fungsi Numpy biasa yang diringkaskan dalam artikel ini boleh membantu kami Melaksanakan analisis dan pemodelan data. Harap kod sampel ini dapat membantu pembaca memahami dengan lebih baik. 🎜Atas ialah kandungan terperinci Ringkasan fungsi yang biasa digunakan dalam perpustakaan Numpy: alat yang berkuasa untuk analisis dan pemodelan data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ajar anda langkah demi langkah untuk memasang NumPy dalam PyCharm dan menggunakan sepenuhnya fungsinya yang berkuasa: NumPy ialah salah satu perpustakaan asas untuk pengkomputeran saintifik dalam Python Ia menyediakan objek tatasusunan berbilang dimensi berprestasi tinggi dan pelbagai fungsi yang diperlukan untuk melaksanakan operasi asas pada fungsi tatasusunan. Ia merupakan bahagian penting dalam kebanyakan projek sains data dan pembelajaran mesin. Artikel ini akan memperkenalkan anda kepada cara memasang NumPy dalam PyCharm, dan menunjukkan ciri hebatnya melalui contoh kod tertentu. Langkah 1: Pasang PyCharm Pertama, kami

Cara menaik taraf versi numpy: Tutorial yang mudah diikuti, memerlukan contoh kod konkrit Pengenalan: NumPy ialah perpustakaan Python penting yang digunakan untuk pengkomputeran saintifik. Ia menyediakan objek tatasusunan berbilang dimensi yang berkuasa dan satu siri fungsi berkaitan yang boleh digunakan untuk melaksanakan operasi berangka yang cekap. Apabila versi baharu dikeluarkan, ciri yang lebih baharu dan pembetulan pepijat sentiasa tersedia kepada kami. Artikel ini akan menerangkan cara untuk menaik taraf pustaka NumPy anda yang dipasang untuk mendapatkan ciri terkini dan menyelesaikan isu yang diketahui. Langkah 1: Semak versi NumPy semasa pada permulaan

Panduan pemasangan Numpy: Satu artikel untuk menyelesaikan masalah pemasangan, memerlukan contoh kod khusus Pengenalan: Numpy ialah perpustakaan pengkomputeran saintifik yang berkuasa dalam Python Ia menyediakan objek dan alatan tatasusunan berbilang dimensi yang cekap untuk mengendalikan data tatasusunan. Walau bagaimanapun, untuk pemula, memasang Numpy boleh menyebabkan kekeliruan. Artikel ini akan memberikan anda panduan pemasangan Numpy untuk membantu anda menyelesaikan masalah pemasangan dengan cepat. 1. Pasang persekitaran Python: Sebelum memasang Numpy, anda perlu terlebih dahulu memastikan bahawa Py telah dipasang.

Rahsia cara menyahpasang perpustakaan NumPy dengan cepat didedahkan Contoh kod khusus NumPy ialah perpustakaan pengkomputeran saintifik Python yang digunakan secara meluas dalam bidang seperti analisis data, pengkomputeran saintifik dan pembelajaran mesin. Walau bagaimanapun, kadangkala kami mungkin perlu menyahpasang pustaka NumPy, sama ada untuk mengemas kini versi atau atas sebab lain. Artikel ini akan memperkenalkan beberapa kaedah untuk menyahpasang perpustakaan NumPy dengan cepat dan memberikan contoh kod khusus. Kaedah 1: Gunakan pip untuk menyahpasang pip ialah alat pengurusan pakej Python yang boleh digunakan untuk memasang, menaik taraf dan

Penjelasan terperinci tentang kaedah operasi penghirisan numpy dan panduan aplikasi praktikal Pengenalan: Numpy ialah salah satu perpustakaan pengkomputeran saintifik yang paling popular dalam Python, menyediakan fungsi operasi tatasusunan yang berkuasa. Antaranya, operasi menghiris adalah salah satu fungsi yang biasa digunakan dan berkuasa dalam numpy. Artikel ini akan memperkenalkan kaedah operasi penghirisan secara numpy secara terperinci, dan menunjukkan penggunaan khusus operasi penghirisan melalui panduan aplikasi praktikal. 1. Pengenalan kepada kaedah operasi penghirisan numpy Operasi penghirisan numpy merujuk kepada mendapatkan subset tatasusunan dengan menentukan selang indeks. Bentuk asasnya ialah:

Contoh dan aplikasi penukaran Tensor dan Numpy TensorFlow ialah rangka kerja pembelajaran mendalam yang sangat popular, dan Numpy ialah perpustakaan teras untuk pengkomputeran saintifik Python. Oleh kerana kedua-dua TensorFlow dan Numpy menggunakan tatasusunan berbilang dimensi untuk memanipulasi data, dalam aplikasi praktikal, kita selalunya perlu menukar antara keduanya. Artikel ini akan memperkenalkan cara menukar antara TensorFlow dan Numpy melalui contoh kod tertentu dan menerangkan penggunaannya dalam aplikasi praktikal. kepala

Pustaka NumPy ialah salah satu perpustakaan penting dalam Python untuk pengkomputeran saintifik dan analisis data. Walau bagaimanapun, kadangkala kami mungkin perlu menyahpasang pustaka NumPy, mungkin kerana kami perlu menaik taraf versi atau menyelesaikan konflik dengan perpustakaan lain. Artikel ini akan memperkenalkan pembaca kepada cara menyahpasang pustaka NumPy dengan betul untuk mengelakkan kemungkinan konflik dan ralat, dan menunjukkan proses operasi melalui contoh kod tertentu. Sebelum kita mula menyahpasang perpustakaan NumPy, kita perlu memastikan bahawa alat pip dipasang, kerana pip ialah alat pengurusan pakej untuk Python.

Ramai pengguna yang baru bersentuhan dengan perisian Kujiale tidak begitu biasa dengan cara Kujiale membuat model sendiri. Masukkan platform Kujiale Dalam Kujiale, klik untuk memasuki antara muka reka bentuk dan hiasan. Dalam antara muka reka bentuk, klik pada perpustakaan industri di sebelah kiri, dan klik pada alat pemasangan perkakasan seluruh rumah dalam perpustakaan industri. Di seluruh alat hiasan keras rumah, operasi pemodelan boleh dilakukan.
