Aplikasi model Seq2Seq dalam pembelajaran mesin
seq2seq ialah model pembelajaran mesin untuk tugasan NLP yang menerima jujukan item input dan menjana jujukan item output. Pada asalnya diperkenalkan oleh Google, ia digunakan terutamanya untuk tugas terjemahan mesin. Model ini telah membawa perubahan revolusioner dalam bidang terjemahan mesin.
Dulu, hanya satu perkataan tertentu yang dipertimbangkan semasa menterjemah ayat, tetapi kini model seq2seq mengambil kira perkataan bersebelahan untuk terjemahan yang lebih tepat. Model ini menggunakan Rangkaian Neural Berulang (RNN), di mana sambungan antara nod boleh membentuk gelung supaya output beberapa nod boleh menjejaskan input nod lain dalam rangkaian. Oleh itu, ia boleh beroperasi secara dinamik, memberikan struktur logik kepada keputusan.
Aplikasi model Seq2seq
Pada masa ini, pembangunan kecerdasan buatan semakin pesat, dan model seq2seq digunakan secara meluas dalam bidang seperti terjemahan, robot sembang dan sistem terbenam suara. Aplikasi biasa termasuk: terjemahan masa nyata, perkhidmatan pelanggan pintar dan pembantu suara, dsb. Aplikasi ini mengambil kesempatan daripada keupayaan berkuasa model seq2seq untuk meningkatkan keselesaan hidup dan kecekapan kerja orang ramai.
1. Terjemahan Mesin
Model seq2seq digunakan terutamanya dalam terjemahan mesin untuk menterjemah teks daripada satu bahasa ke bahasa lain melalui kecerdasan buatan.
2. Pengecaman Pertuturan
Pengecaman pertuturan ialah keupayaan untuk menukar perkataan yang diucapkan dengan kuat kepada teks yang boleh dibaca.
3. Sari Kata Video
Menggabungkan tindakan dan peristiwa video dengan sari kata yang dijana secara automatik boleh meningkatkan pengambilan kandungan video yang berkesan.
Cara model Seq2seq berfungsi
Sekarang mari lihat cara model sebenar berfungsi. Model ini terutamanya menggunakan seni bina penyahkod pengekod. Seperti namanya, Seq2seq mencipta urutan perkataan daripada urutan input perkataan (satu atau lebih ayat). Ini boleh dicapai menggunakan Rangkaian Neural Berulang (RNN). LSTM atau GRU ialah varian RNN yang lebih maju dan kadangkala dipanggil rangkaian penyahkod pengekod kerana terutamanya terdiri daripada pengekod dan penyahkod.
Jenis model Seq2Seq
1. Model Seq2Seq asal
Seni bina asas Seq2Seq, yang digunakan untuk pengekod dan penyahkod. Tetapi GRU, LSTM dan RNN juga boleh digunakan. Mari kita ambil RNN sebagai contoh seni bina RNN biasanya sangat mudah. Ia memerlukan dua input, perkataan dari urutan input dan vektor konteks atau apa sahaja yang tersembunyi dalam input.
2. Model Seq2Seq berasaskan perhatian
Dalam Seq2Seq berasaskan perhatian, kami membina beberapa keadaan tersembunyi yang sepadan dengan setiap elemen dalam jujukan, yang berbeza dengan model Seq2Seq asal, di mana Kami hanya mempunyai satu keadaan tersembunyi terakhir daripada pengekod. Ini memungkinkan untuk menyimpan lebih banyak data dalam vektor konteks. Oleh kerana keadaan tersembunyi setiap elemen input diambil kira, kami memerlukan vektor konteks yang bukan sahaja mengekstrak maklumat yang paling relevan daripada keadaan tersembunyi ini, tetapi juga mengalih keluar sebarang maklumat yang tidak berguna.
Dalam model Seq2Seq berasaskan perhatian, vektor konteks bertindak sebagai titik permulaan untuk penyahkod. Walau bagaimanapun, berbanding model asas Seq2Seq, keadaan tersembunyi penyahkod dihantar kembali ke lapisan yang disambungkan sepenuhnya untuk mencipta vektor konteks baharu. Oleh itu, vektor konteks model Seq2Seq berasaskan perhatian adalah lebih dinamik dan boleh laras berbanding model Seq2Seq tradisional.
Atas ialah kandungan terperinci Aplikasi model Seq2Seq dalam pembelajaran mesin. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,
