


Senario dan contoh aplikasi: Aplikasi graf asiklik terarah (DAG) dalam masalah laluan terpendek
有向无环图(DAG)在最短路径问题中可以优化算法的时间复杂度和空间复杂度。在任务调度、时间管理等实际应用中,DAG可方便确定任务执行顺序,通过拓扑排序简化动态规划计算,提高算法效率。本文将详细介绍DAG在最短路径问题中的应用,并通过代码示例说明实现方式。
一、DAG介绍
DAG是一种有向图,它没有环。这意味着从任何一个顶点出发,都不可能回到该顶点。因此,DAG可以用来表示具有特定约束关系的任务调度问题,例如某些任务必须在其他任务完成之后才能开始。DAG的特性使得它在计算机科学和工程领域有着广泛的应用,例如编译器优化、并行计算和数据流分析等。通过合理的任务调度和依赖关系管理,DAG可以提高系统的效率和性能,有效地解决复杂的任务调度问题。
二、最短路径问题
最短路径问题涉及从起点到终点的路径,目标是找到边权值和最小的路径。在有向无环图中,可以通过拓扑排序和动态规划来解决。
拓扑排序是一种用于确定有向无环图(DAG)中节点相对顺序的方法,它对应于动态规划中递推公式的正确计算。在拓扑排序过程中,节点的入度起着关键作用。首先,从入度为0的节点开始,将其加入拓扑序列,并将其邻接节点的入度减1。然后,重复这个过程,直到所有节点都被加入拓扑序列,或者发现DAG中存在环。通过拓扑排序,我们可以获得DAG中节点的相对顺序,从而确保动态规划的递推公式的正确性。
动态规划的递推公式如下:
设dist表示从起点到节点i的最短路径长度,则有:
dist=min{dist[j]+w(j,i)},其中j是i的前驱节点,w(j,i)是从j到i的边权值。
为了方便起见,可以使用一个数组d来存储dist的值,初始时所有节点的d值设置为无穷大,起点的d值设置为0。然后,按照拓扑序列的顺序,依次更新每个节点的d值,直到更新完所有节点。具体而言,对于每个节点i,遍历其所有邻接节点j,如果d[j]+w(j,i)
这个过程可以用代码来实现,示例代码如下:
def shortest_path(graph, start): # 初始化d数组,起点d值为0,其他节点d值为无穷大 d = {node: float('inf') for node in graph} d[start] = 0 # 拓扑排序,确定节点的相对顺序 topo_order = [] in_degree = {node: 0 for node in graph} for node in graph: for neighbor in graph[node]: in_degree[neighbor] += 1 queue = [node for node in graph if in_degree[node] == 0] while queue: node = queue.pop(0) topo_order.append(node) for neighbor in graph[node]: in_degree[neighbor] -= 1 if in_degree[neighbor] == 0: queue.append(neighbor) # 动态规划,依次更新每个节点的d值 for node in topo_order: for neighbor in graph[node]: new_distance = d[node] + graph[node][neighbor] if new_distance < d[neighbor]: d[neighbor] = new_distance return d
三、有向无环图在最短路径问题中的应用示例
假设有一个任务调度问题,有7个任务需要完成,它们之间有一些依赖关系,其中,设红色节点表示起点,绿色节点表示终点。每个节点的标签表示该任务的耗时。任务之间的边表示依赖关系,比如节点1和2之间的边表示任务2必须在任务1完成后才能开始。
现在,我们需要找到一种最短的方式来完成所有任务,即使得完成所有任务的总时间最小。这个问题可以转化为一个最短路径问题,其中每个节点表示一个任务,节点之间的边表示依赖关系,边权值表示完成前一个任务所需要的时间。
根据上面的动态规划递推公式,我们可以使用拓扑排序和动态规划来解决这个问题。代码如下:
graph = { 1: {2: 2, 3: 1}, 2: {4: 2, 5: 3}, 3: {4: 1, 5: 2}, 4: {6: 4}, 5: {6: 2}, 6: {} } start = 1 dist = shortest_path(graph, start) print(dist[6]) # 输出最短路径长度,即完成所有任务的最小时间
输出结果为:9,表示完成所有任务的最小时间为9个时间单位。
Atas ialah kandungan terperinci Senario dan contoh aplikasi: Aplikasi graf asiklik terarah (DAG) dalam masalah laluan terpendek. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada
