


NetEase Fuxi mempunyai 3 kertas kerja yang dipilih dalam ICLR 2023, meliputi bidang seperti pembelajaran pengukuhan dan pemprosesan bahasa semula jadi
Persidangan Antarabangsa mengenai Pembelajaran Perwakilan (ICLR) ke-11 dijangka diadakan di luar talian di Kigali, ibu negara Rwanda, dari 1 hingga 5 Mei. Baru-baru ini, ICLR mengumumkan keputusan penerimaan kertas, termasuk sejumlah 3 kertas oleh NetEase Fuxi. Di antara ketiga-tiga kertas ini, satu dipilih sebagai kertas pembentangan lisan dan dua lagi dipilih sebagai kertas pembentangan sorotan. Kandungan kertas kerja ini melibatkan banyak bidang seperti pembelajaran pengukuhan dan pemprosesan bahasa semula jadi. Kertas kerja yang dipilih kali ini merupakan pencapaian penting pasukan NetEase Fuxi dalam hala tuju penyelidikan ini, dan ia juga merupakan pengiktirafan dan sumbangan cemerlang mereka dalam dunia akademik.

Eksperimen menunjukkan bahawa KLD lebih sensitif kepada titik abnormal, manakala TCD adalah teguh.
Untuk mengimbangi anggaran TVD, kami memperkenalkan sasaran TaiLr. TaiLr mencapai matlamat ini dengan mengurangkan berat sampel data sebenar dengan kebarangkalian model yang rendah, dan kekuatan penalti boleh dilaraskan mengikut keperluan. Eksperimen menunjukkan bahawa kaedah kami mengurangkan anggaran terlalu tinggi bagi jujukan yang merosot sambil mengekalkan kepelbagaian dan meningkatkan kualiti penjanaan untuk pelbagai tugas penjanaan teks.

Walau bagaimanapun, kerja lepas sering memfokuskan pada pra-latihan strategi dengan kemahiran yang berbeza melalui penerokaan alam sekitar Walau bagaimanapun, adalah sukar untuk memastikan peningkatan prestasi tugas hiliran melalui kaedah pra-latihan penerokaan pelbagai, malah mungkin membawa kepada peningkatan. kepada penggunaan pra-latihan yang lebih besar Semakin rendah prestasi, masalah "tidak sepadan". Oleh itu, NetEase Fuxi dan pasukan Makmal Pembelajaran Pengukuhan Dalam Universiti Tianjin mencadangkan rangka kerja EUCLID, yang memperkenalkan paradigma RL berasaskan model untuk mendapat manfaat daripada model dinamik yang tepat melalui pra-latihan jangka panjang untuk mencapai penyesuaian tugas hiliran yang pantas dan kecekapan pensampelan yang lebih tinggi. Dalam fasa penalaan halus, EUCLID menggunakan model dinamik yang telah dilatih untuk perancangan berpandukan dasar Tetapan ini boleh menghapuskan kejutan prestasi yang disebabkan oleh masalah ketidakpadanan dan memperoleh peningkatan prestasi yang membosankan.

Hasil percubaan menunjukkan bahawa NECSA mencapai markah tertinggi dalam semua persekitaran eksperimen dan mencapai tahap terkini.

NECSA boleh disepadukan dengan mudah ke dalam algoritma pembelajaran pengukuhan dan mempunyai serba boleh yang kuat. Salah satu senario aplikasi biasa ialah latihan robot pertandingan permainan. NECSA menyediakan idea baharu berdasarkan analisis keadaan, yang boleh meningkatkan kesan pembelajaran dan amat sesuai untuk perwakilan keadaan permainan yang kompleks dan berdimensi tinggi. Melalui NECSA, tahap daya saing dan antropomorfisme robot boleh dioptimumkan dengan lebih baik dan lebih pantas, dan kebolehtafsiran model yang baik boleh disediakan. Pada masa hadapan, NetEase Fuxi akan mempromosikan aplikasi praktikal kaedah NECSA dalam berbilang senario permainan.
Terima kasih khas kepada pasukan Profesor Huang Minlie dari Universiti Tsinghua atas sumbangan penyelidikan penting mereka kepada "Menyesuaikan Model Penjanaan Bahasa di bawah Jumlah Jarak Variasi". Kerja penyelidikan mereka telah memberikan sumbangan penting dalam penyesuaian model penjanaan bahasa, menyediakan idea dan kaedah baharu untuk meningkatkan teknologi pemprosesan bahasa semula jadi. Pada masa yang sama, kami ingin mengucapkan terima kasih kepada Makmal Pembelajaran Pengukuhan Dalam Universiti Tianjin atas sumbangan penyelidikannya yang penting kepada "EUCLID: Ke Arah Pembelajaran Pengukuhan Tanpa Penyeliaan yang Cekap dengan Model Dinamik Pelbagai pilihan". Kerja penyelidikan mereka tertumpu pada bidang pembelajaran tetulang tanpa pengawasan dan mencadangkan model dinamik pelbagai pilihan yang cekap, memberikan sumbangan penting kepada pembangunan algoritma pembelajaran tetulang. Di samping itu, kami juga ingin mengucapkan terima kasih kepada Makmal Pangu Universiti Kyushu atas sumbangan penyelidikannya yang penting kepada "Kawalan Episodik Neural dengan Abstraksi Negeri". Kerja penyelidikan mereka memberi tumpuan kepada kawalan memori neuron dan abstraksi keadaan, dan mencadangkan kaedah kawalan neuron baru, yang menyediakan idea baharu dan sokongan teknikal untuk pembangunan dan aplikasi sistem pintar. Sumbangan pasukan penyelidikan ini bukan sahaja penting dalam akademik tetapi juga mempunyai potensi implikasi untuk aplikasi praktikal. Kami merakamkan ucapan terima kasih yang tulus kepada mereka atas kerja cemerlang mereka dan mengharapkan kejayaan berterusan mereka dalam bidang masing-masing Sebagai institusi penyelidikan dan aplikasi AI permainan dan pan-hiburan teratas, NetEase Fuxi komited untuk membuka teknologi dan produk AI kepada lebih banyak lagi. rakan kongsi. Untuk mempromosikan aplikasi teknologi kecerdasan buatan dalam pelbagai bidang. Setakat ini, lebih daripada 200 pelanggan telah memilih perkhidmatan NetEase Fuxi, dan bilangan panggilan telah melebihi ratusan juta setiap hari.
Atas ialah kandungan terperinci NetEase Fuxi mempunyai 3 kertas kerja yang dipilih dalam ICLR 2023, meliputi bidang seperti pembelajaran pengukuhan dan pemprosesan bahasa semula jadi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
