Jadual Kandungan
Contoh menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran
Rumah Peranti teknologi AI Menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran: petua dan langkah

Menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran: petua dan langkah

Jan 22, 2024 pm 09:27 PM
penglihatan komputer Konsep algoritma

Menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran: petua dan langkah

Pengesanan objek ialah tugas utama dalam penglihatan komputer, di mana matlamatnya adalah untuk mengenal pasti dan mencari objek yang menarik dalam imej atau video. Algoritma pengurangan dimensi ialah kaedah yang biasa digunakan untuk pengesanan sasaran dengan menukar data imej berdimensi tinggi kepada perwakilan ciri berdimensi rendah. Ciri-ciri ini boleh menyatakan maklumat utama sasaran dengan berkesan, dengan itu menyokong ketepatan dan kecekapan pengesanan sasaran.

Langkah 1: Sediakan set data

Mula-mula, sediakan set data berlabel yang mengandungi imej asal dan kawasan minat yang sepadan. Kawasan ini boleh dianotasi atau dijana secara manual menggunakan algoritma pengesanan objek sedia ada. Setiap wilayah perlu diberi anotasi dengan kotak sempadan dan maklumat kategori.

Langkah 2: Bina model

Untuk mencapai tugas pengesanan sasaran, biasanya perlu membina model pembelajaran mendalam yang boleh menerima imej asal sebagai input dan output koordinat kotak sempadan kawasan itu berkepentingan. Pendekatan biasa ialah menggunakan model regresi berdasarkan rangkaian neural convolutional (CNN). Dengan melatih model ini, pemetaan daripada imej ke koordinat kotak sempadan boleh dipelajari untuk mengesan kawasan yang menarik. Algoritma pengurangan dimensi ini boleh mengurangkan dimensi data input dan mengekstrak maklumat ciri yang berkaitan dengan pengesanan sasaran dengan berkesan, dengan itu meningkatkan prestasi pengesanan.

Langkah 3: Latih model

Selepas menyediakan set data dan model, anda boleh mula melatih model. Matlamat latihan adalah untuk membolehkan model meramalkan koordinat kotak sempadan kawasan yang diminati setepat mungkin. Fungsi kehilangan biasa ialah ralat min kuasa dua (MSE), yang mengukur perbezaan antara koordinat kotak sempadan yang diramalkan dan koordinat sebenar. Algoritma pengoptimuman seperti keturunan kecerunan boleh digunakan untuk meminimumkan fungsi kehilangan, dengan itu mengemas kini parameter berat model.

Langkah 4: Uji model

Selepas latihan selesai, anda boleh menggunakan set data ujian untuk menilai prestasi model. Pada masa ujian, model digunakan pada imej dalam set data ujian dan koordinat kotak sempadan yang diramalkan adalah output. Ketepatan model kemudiannya dinilai dengan membandingkan kotak sempadan yang diramalkan dengan kotak sempadan beranotasi kebenaran tanah. Penunjuk penilaian yang biasa digunakan termasuk ketepatan, ingat semula, mAP, dsb.

Langkah 5: Gunakan model

Selepas lulus ujian, anda boleh menggunakan model terlatih pada tugas pengesanan sasaran sebenar. Bagi setiap imej input, model akan mengeluarkan koordinat kotak sempadan kawasan yang diminati untuk mengesan objek sasaran. Seperti yang diperlukan, kotak sempadan keluaran boleh diproses selepas, seperti penindasan bukan maksimum (NMS), untuk meningkatkan ketepatan keputusan pengesanan.

Antaranya, langkah 2 membina model adalah langkah kritikal, yang boleh dicapai menggunakan teknologi pembelajaran mendalam seperti rangkaian neural konvolusi. Semasa latihan dan ujian, fungsi kerugian dan metrik penilaian yang sesuai perlu digunakan untuk mengukur prestasi model. Akhirnya, melalui aplikasi praktikal, pengesanan tepat objek sasaran boleh dicapai.

Contoh menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran

Selepas memperkenalkan kaedah dan langkah khusus, mari lihat contoh pelaksanaan. Berikut ialah contoh mudah yang ditulis dalam Python yang menggambarkan cara melaksanakan pengesanan objek menggunakan algoritma pengurangan dimensi:

import numpy as np  
import cv2  
  
# 准备数据集  
image_path = 'example.jpg'  
annotation_path = 'example.json'  
image = cv2.imread(image_path)  
with open(annotation_path, 'r') as f:  
    annotations = np.array(json.load(f))  
  
# 构建模型  
model = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res101_iter_70000.caffemodel')  
blob = cv2.dnn.blobFromImage(image, scalefactor=0.007843, size=(224, 224), mean=(104.0, 117.0, 123.0), swapRB=False, crop=False)  
model.setInput(blob)  
  
# 训练模型  
output = model.forward()  
indices = cv2.dnn.NMSBoxes(output, score_threshold=0.5, nms_threshold=0.4)  
  
# 应用模型  
for i in indices[0]:  
    box = output[i, :4] * np.array([image.shape[1], image.shape[0], image.shape[1], image.shape[0]])  
    cv2.rectangle(image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2)  
cv2.imshow('Output', image)  
cv2.waitKey(0)
Salin selepas log masuk

Contoh kod ini menggunakan perpustakaan OpenCV untuk melaksanakan pengesanan objek. Pertama, set data berlabel perlu disediakan, yang mengandungi imej asal dan kawasan minat yang sepadan. Dalam contoh ini, kami menganggap bahawa kami sudah mempunyai fail JSON yang mengandungi maklumat anotasi. Kemudian, bina model pembelajaran mendalam, di sini menggunakan model ResNet101 yang telah terlatih. Seterusnya, model digunakan pada imej input untuk mendapatkan koordinat kotak sempadan yang diramalkan. Akhir sekali, kotak sempadan yang diramalkan digunakan pada imej dan output dipaparkan.

Atas ialah kandungan terperinci Menggunakan algoritma pengurangan dimensi untuk mencapai pengesanan sasaran: petua dan langkah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Analisis mendalam tentang Algoritma Pengoptimuman Serigala Kelabu (GWO) serta kekuatan dan kelemahannya Analisis mendalam tentang Algoritma Pengoptimuman Serigala Kelabu (GWO) serta kekuatan dan kelemahannya Jan 19, 2024 pm 07:48 PM

Algoritma Pengoptimuman Serigala Kelabu (GWO) ialah algoritma metaheuristik berasaskan populasi yang menyerupai hierarki kepimpinan dan mekanisme memburu serigala kelabu dalam alam semula jadi. Inspirasi Algoritma Serigala Kelabu 1. Serigala kelabu dianggap sebagai pemangsa puncak dan berada di bahagian atas rantai makanan. 2. Serigala kelabu suka hidup dalam kumpulan (hidup berkumpulan), dengan purata 5-12 serigala dalam setiap pek. 3. Serigala kelabu mempunyai hierarki penguasaan sosial yang sangat ketat, seperti yang ditunjukkan di bawah: Serigala alfa: Serigala alfa menduduki kedudukan dominan dalam keseluruhan kumpulan serigala kelabu dan mempunyai hak untuk memerintah seluruh kumpulan serigala kelabu. Dalam aplikasi algoritma, Alpha Wolf adalah salah satu penyelesaian terbaik, penyelesaian optimum yang dihasilkan oleh algoritma pengoptimuman. Serigala beta: Serigala beta melaporkan kepada serigala Alpha dengan kerap dan membantu serigala Alpha membuat keputusan yang terbaik. Dalam aplikasi algoritma, Beta Wolf boleh

Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Perbezaan antara algoritma pengesanan sasaran satu peringkat dan dwi peringkat Jan 23, 2024 pm 01:48 PM

Pengesanan objek adalah tugas penting dalam bidang penglihatan komputer, digunakan untuk mengenal pasti objek dalam imej atau video dan mencari lokasinya. Tugasan ini biasanya dibahagikan kepada dua kategori algoritma, satu peringkat dan dua peringkat, yang berbeza dari segi ketepatan dan keteguhan. Algoritma pengesanan sasaran satu peringkat Algoritma pengesanan sasaran satu peringkat menukarkan pengesanan sasaran kepada masalah klasifikasi Kelebihannya ialah ia pantas dan boleh menyelesaikan pengesanan hanya dalam satu langkah. Walau bagaimanapun, disebabkan terlalu memudahkan, ketepatan biasanya tidak sebaik algoritma pengesanan objek dua peringkat. Algoritma pengesanan sasaran satu peringkat biasa termasuk YOLO, SSD dan FasterR-CNN. Algoritma ini biasanya mengambil keseluruhan imej sebagai input dan menjalankan pengelas untuk mengenal pasti objek sasaran. Tidak seperti algoritma pengesanan sasaran dua peringkat tradisional, mereka tidak perlu menentukan kawasan terlebih dahulu, tetapi meramalkan secara langsung

Terokai prinsip asas dan proses pelaksanaan algoritma pensampelan bersarang Terokai prinsip asas dan proses pelaksanaan algoritma pensampelan bersarang Jan 22, 2024 pm 09:51 PM

Algoritma persampelan bersarang ialah algoritma inferens statistik Bayesian yang cekap digunakan untuk mengira kamiran atau penjumlahan di bawah taburan kebarangkalian kompleks. Ia berfungsi dengan menguraikan ruang parameter kepada berbilang hiperkubus dengan isipadu yang sama, dan secara beransur-ansur dan berulang "menolak keluar" salah satu hiperkubus volum terkecil, dan kemudian mengisi hiperkubus dengan sampel rawak untuk menganggarkan nilai kamiran taburan kebarangkalian dengan lebih baik. Melalui lelaran berterusan, algoritma pensampelan bersarang boleh memperoleh nilai kamiran ketepatan tinggi dan sempadan ruang parameter, yang boleh digunakan untuk masalah statistik seperti perbandingan model, anggaran parameter, dan pemilihan model. Idea teras algoritma ini adalah untuk mengubah masalah penyepaduan kompleks kepada satu siri masalah penyepaduan mudah, dan mendekati nilai kamiran sebenar dengan mengurangkan jumlah ruang parameter secara beransur-ansur. Setiap langkah lelaran mengambil sampel secara rawak daripada ruang parameter

Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Cara menggunakan teknologi AI untuk memulihkan foto lama (dengan contoh dan analisis kod) Jan 24, 2024 pm 09:57 PM

Pemulihan foto lama ialah kaedah menggunakan teknologi kecerdasan buatan untuk membaiki, menambah baik dan menambah baik foto lama. Menggunakan penglihatan komputer dan algoritma pembelajaran mesin, teknologi ini secara automatik boleh mengenal pasti dan membaiki kerosakan dan kecacatan pada foto lama, menjadikannya kelihatan lebih jelas, lebih semula jadi dan lebih realistik. Prinsip teknikal pemulihan foto lama terutamanya merangkumi aspek-aspek berikut: 1. Penyahnosian dan penambahbaikan imej Apabila memulihkan foto lama, foto itu perlu dibunyikan dan dipertingkatkan terlebih dahulu. Algoritma dan penapis pemprosesan imej, seperti penapisan min, penapisan Gaussian, penapisan dua hala, dsb., boleh digunakan untuk menyelesaikan masalah bunyi dan bintik warna, dengan itu meningkatkan kualiti foto. 2. Pemulihan dan pembaikan imej Dalam foto lama, mungkin terdapat beberapa kecacatan dan kerosakan, seperti calar, retak, pudar, dsb. Masalah ini boleh diselesaikan dengan algoritma pemulihan dan pembaikan imej

Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Aplikasi teknologi AI dalam pembinaan semula resolusi super imej Jan 23, 2024 am 08:06 AM

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam seperti rangkaian neural convolutional (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat. Kaedah pembinaan semula Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam. 1) Kaedah berasaskan interpolasi Pembinaan semula imej resolusi super berdasarkan interpolasi

Menganalisis prinsip, model dan komposisi Algoritma Carian Sparrow (SSA) Menganalisis prinsip, model dan komposisi Algoritma Carian Sparrow (SSA) Jan 19, 2024 pm 10:27 PM

Algoritma Carian Sparrow (SSA) ialah algoritma pengoptimuman meta-heuristik berdasarkan tingkah laku anti-pemangsaan dan mencari makan burung pipit. Tingkah laku mencari makan burung pipit boleh dibahagikan kepada dua jenis utama: pengeluar dan pemulung. Pengeluar secara aktif mencari makanan, manakala pemulung bersaing untuk mendapatkan makanan daripada pengeluar. Prinsip Algoritma Pencarian Sparrow (SSA) Dalam Algoritma Pencarian Sparrow (SSA), setiap burung pipit sangat memperhatikan tingkah laku jiran-jirannya. Dengan menggunakan strategi mencari makan yang berbeza, individu dapat menggunakan tenaga tertahan dengan cekap untuk mengejar lebih banyak makanan. Selain itu, burung lebih terdedah kepada pemangsa dalam ruang carian mereka, jadi mereka perlu mencari lokasi yang lebih selamat. Burung di tengah koloni boleh meminimumkan pelbagai bahaya mereka sendiri dengan tinggal dekat dengan jiran mereka. Apabila burung mengesan pemangsa, ia membuat panggilan penggera

Penjelasan terperinci algoritma Bellman Ford dan pelaksanaan dalam Python Penjelasan terperinci algoritma Bellman Ford dan pelaksanaan dalam Python Jan 22, 2024 pm 07:39 PM

Algoritma Bellman Ford boleh mencari laluan terpendek dari nod sasaran ke nod lain dalam graf berwajaran. Ini sangat serupa dengan algoritma Dijkstra Algoritma Bellman-Ford boleh mengendalikan graf dengan pemberat negatif dan agak mudah dari segi pelaksanaan. Penjelasan terperinci tentang prinsip algoritma Bellman Ford Algoritma Bellman Ford secara lelaran mencari laluan baharu yang lebih pendek daripada laluan yang terlebih anggaran dengan membuat anggaran terlebih panjang laluan dari bucu permulaan kepada semua bucu lain. Kerana kita ingin merekodkan jarak laluan setiap nod, kita boleh menyimpannya dalam tatasusunan saiz n, di mana n juga mewakili bilangan nod. Contoh Rajah 1. Pilih nod permulaan, tetapkan ia kepada semua bucu lain tanpa terhingga, dan rekod nilai laluan. 2. Lawati setiap tepi dan lakukan operasi kelonggaran untuk mengemas kini laluan terpendek secara berterusan. 3. Kita perlukan

Prinsip pengoptimuman berangka dan analisis Algoritma Pengoptimuman Paus (WOA) Prinsip pengoptimuman berangka dan analisis Algoritma Pengoptimuman Paus (WOA) Jan 19, 2024 pm 07:27 PM

Algoritma Pengoptimuman Paus (WOA) ialah algoritma pengoptimuman metaheuristik yang diilhamkan oleh alam semula jadi yang menyerupai tingkah laku memburu ikan paus bungkuk dan digunakan untuk pengoptimuman masalah berangka. Algoritma Pengoptimuman Paus (WOA) bermula dengan satu set penyelesaian rawak dan mengoptimumkan berdasarkan ejen carian yang dipilih secara rawak atau penyelesaian terbaik setakat ini melalui kemas kini kedudukan ejen carian dalam setiap lelaran. Inspirasi Algoritma Pengoptimuman Paus Algoritma Pengoptimuman Paus diinspirasikan oleh tingkah laku memburu ikan paus bungkuk. Paus bungkuk lebih suka makanan yang terdapat berhampiran permukaan, seperti krill dan kumpulan ikan. Oleh itu, paus bungkuk mengumpulkan makanan bersama-sama untuk membentuk rangkaian gelembung dengan meniup buih dalam lingkaran bawah ke atas semasa memburu. Dalam gerakan "lingkaran ke atas", ikan paus bungkuk menyelam kira-kira 12m, kemudian mula membentuk gelembung lingkaran di sekeliling mangsanya dan berenang ke atas.

See all articles