Jadual Kandungan
Kaedah pembinaan semula
Langkah pembinaan semula
Berikut ialah contoh pembinaan semula imej resolusi super berasaskan pembelajaran mendalam yang mudah, dilaksanakan menggunakan TensorFlow dan Keras. Dalam contoh ini, kami akan menggunakan model berasaskan CNN untuk menjana imej resolusi tinggi daripada imej resolusi rendah.
Rumah Peranti teknologi AI Aplikasi teknologi AI dalam pembinaan semula resolusi super imej

Aplikasi teknologi AI dalam pembinaan semula resolusi super imej

Jan 23, 2024 am 08:06 AM
AI penglihatan komputer pemprosesan imej

Aplikasi teknologi AI dalam pembinaan semula resolusi super imej

Pembinaan semula imej resolusi super ialah proses menjana imej resolusi tinggi daripada imej resolusi rendah menggunakan teknik pembelajaran mendalam, seperti rangkaian neural konvolusi (CNN) dan rangkaian adversarial generatif (GAN). Matlamat kaedah ini adalah untuk meningkatkan kualiti dan perincian imej dengan menukar imej resolusi rendah kepada imej resolusi tinggi. Teknologi ini mempunyai aplikasi yang luas dalam banyak bidang, seperti pengimejan perubatan, kamera pengawasan, imej satelit, dsb. Melalui pembinaan semula imej resolusi super, kami boleh mendapatkan imej yang lebih jelas dan terperinci, membantu menganalisis dan mengenal pasti sasaran dan ciri dalam imej dengan lebih tepat.

Kaedah pembinaan semula

Kaedah pembinaan semula imej resolusi super secara amnya boleh dibahagikan kepada dua kategori: kaedah berasaskan interpolasi dan kaedah berasaskan pembelajaran mendalam.

1) Kaedah berasaskan interpolasi

Kaedah pembinaan semula imej resolusi super berasaskan interpolasi ialah teknik yang mudah dan biasa digunakan. Ia menjana imej resolusi tinggi daripada imej resolusi rendah dengan menggunakan algoritma interpolasi. Algoritma interpolasi menganggarkan nilai piksel dalam imej resolusi tinggi berdasarkan nilai piksel dalam imej resolusi rendah. Algoritma interpolasi biasa termasuk interpolasi bilinear, interpolasi bikubik dan interpolasi Lanczos. Algoritma ini boleh menggunakan maklumat daripada piksel sekeliling untuk menganggar nilai piksel, sekali gus meningkatkan perincian dan kejelasan imej. Dengan memilih algoritma interpolasi yang sesuai, tahap peningkatan imej dan kesan pembinaan semula yang berbeza boleh dicapai. Walau bagaimanapun, kaedah berasaskan interpolasi juga mempunyai beberapa had, seperti ketidakupayaan untuk memulihkan butiran dan struktur yang hilang, dan kemungkinan menyebabkan imej kabur atau herotan. Oleh itu, dalam aplikasi praktikal, adalah perlu untuk mempertimbangkan secara menyeluruh kesan dan pengiraan algoritma

2) Kaedah berasaskan pembelajaran mendalam

Kaedah berasaskan pembelajaran mendalam ialah kaedah pembinaan semula imej resolusi super yang lebih maju . Pendekatan ini biasanya menggunakan teknik pembelajaran mendalam seperti rangkaian neural konvolusi (CNN) atau rangkaian musuh generatif (GAN) untuk menjana imej resolusi tinggi daripada imej resolusi rendah. Model pembelajaran mendalam ini boleh mempelajari pemetaan perhubungan antara imej daripada set data yang besar dan mengeksploitasi perhubungan ini untuk menjana imej resolusi tinggi.

Convolutional Neural Network (CNN) ialah kaedah yang biasa digunakan berdasarkan pembelajaran mendalam. Kaedah ini biasanya menggunakan rangkaian yang terdiri daripada lapisan konvolusi, lapisan pengumpulan dan lapisan bersambung sepenuhnya untuk memodelkan hubungan pemetaan antara imej. Model CNN biasanya termasuk pengekod dan penyahkod, di mana lapisan pengekod menukar imej resolusi rendah kepada vektor ciri, dan lapisan penyahkod menukar vektor ciri kepada imej resolusi tinggi.

Generative Adversarial Network (GAN) ialah satu lagi kaedah yang biasa digunakan berdasarkan pembelajaran mendalam. Pendekatan ini menggunakan dua model pembelajaran mendalam: penjana dan diskriminator. Model penjana menukar imej resolusi rendah kepada imej resolusi tinggi dan cuba menipu model diskriminator supaya tidak dapat membezakan antara imej yang dijana dan imej resolusi tinggi sebenar. Model diskriminator cuba membezakan antara imej yang dihasilkan oleh penjana dan imej resolusi tinggi sebenar. Dengan melatih secara berulang-ulang kedua-dua model ini secara berterusan, model penjana boleh menjana imej resolusi tinggi yang berkualiti tinggi.

Langkah pembinaan semula

Langkah-langkah pembinaan semula imej resolusi super biasanya termasuk langkah berikut:

1. model, ia diperlukan Mengumpul sejumlah besar pasangan imej resolusi rendah dan resolusi tinggi. Pasangan imej ini memerlukan prapemprosesan seperti memangkas, mengubah saiz, menormalkan, dsb.

2. Pemilihan model dan latihan

Memilih model yang sesuai dan melatihnya adalah langkah utama untuk pembinaan semula imej resolusi super. Seseorang boleh memilih antara kaedah berasaskan interpolasi atau kaedah berasaskan pembelajaran mendalam. Kaedah berasaskan pembelajaran mendalam biasanya memerlukan set data yang lebih besar dan masa latihan yang lebih lama. Semasa proses latihan, fungsi kehilangan yang sesuai perlu dipilih untuk menilai prestasi model, seperti ralat purata kuasa dua (MSE) atau kehilangan persepsi (Perceptual Loss).

3. Pengoptimuman dan pelarasan model

Selepas melatih model, model perlu dilaraskan dan dioptimumkan untuk meningkatkan prestasinya. Anda boleh mencuba hiperparameter dan algoritma pengoptimuman yang berbeza dan menggunakan set pengesahan untuk menilai prestasi model.

4. Pengujian dan Penilaian

Gunakan set ujian untuk menguji prestasi model dan menilai imej resolusi tinggi yang dihasilkan. Pelbagai metrik penilaian boleh digunakan, seperti Nisbah Isyarat-ke-Bunyi Puncak (PSNR), Indeks Persamaan Struktur (SSIM), dan Indeks Kualiti Persepsi (PI), dsb.

Contoh kod

Berikut ialah contoh pembinaan semula imej resolusi super berasaskan pembelajaran mendalam yang mudah, dilaksanakan menggunakan TensorFlow dan Keras. Dalam contoh ini, kami akan menggunakan model berasaskan CNN untuk menjana imej resolusi tinggi daripada imej resolusi rendah.

1. Penyediaan set data

Kami akan menggunakan set data DIV2K, yang mengandungi berbilang pasangan imej dengan resolusi berbeza. Kami akan menggunakan 800 pasangan imej ini untuk latihan dan 100 pasangan imej untuk ujian. Semasa menyediakan set data, kita perlu mengurangkan imej resolusi rendah kepada 1/4 sebelum menyimpannya dengan imej resolusi tinggi asal.

2. Pemilihan model dan latihan

我们将使用一个基于CNN的模型来实现超分辨率图像重建。该模型包括一个编码器和一个解码器,其中编码器包括多个卷积层和池化层,用于将低分辨率图像转换为特征向量。解码器包括多个反卷积层和上采样层,用于将特征向量转换为高分辨率图像。

以下是模型的实现代码:

from tensorflow.keras.layers import Input, Conv2D, UpSampling2D
from tensorflow.keras.models import Model

def build_model():
    # 输入层
    inputs = Input(shape=(None, None, 3))

    # 编码器
    x = Conv2D(64, 3, activation='relu', padding='same')(inputs)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)

    # 解码器
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = UpSampling2D()(x)
    x = Conv2D(3, 3, activation='sigmoid', padding='same')(x)

    # 构建模型
    model = Model(inputs=inputs, outputs=x)

    return model
Salin selepas log masuk

3.模型的优化和调整

我们将使用均方误差(MSE)作为损失函数,并使用Adam优化器来训练模型。在训练过程中,我们将使用EarlyStopping回调函数来避免过拟合,并将模型保存为h5文件。

以下是模型的优化和调整代码:

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam

# 构建模型
model = build_model()

# 编译模型
model.compile(optimizer=Adam(lr=1e-4), loss='mse')

# 设置回调函数
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_checkpoint = ModelCheckpoint('model.h5', monitor='val_loss',
                                    save_best_only=True, save_weights_only=True)

# 训练模型
model.fit(train_X, train_Y, batch_size=16, epochs=100, validation_split=0.1,
          callbacks=[early_stopping, model_checkpoint])
Salin selepas log masuk

4.测试和评估

我们将使用测试集来测试模型的性能,并计算峰值信噪比(PSNR)和结构相似性指数(SSIM)来评估生成的高分辨率图像的质量。

以下是测试和评估代码:

from skimage.metrics import peak_signal_noise_ratio, structural_similarity

# 加载模型
model.load_weights('model.h5')

# 测试模型
test_Y_pred = model.predict(test_X)

# 计算 PSNR 和 SSIM
psnr = peak_signal_noise_ratio(test_Y, test_Y_pred, data_range=1.0)
ssim =structural_similarity(test_Y, test_Y_pred, multichannel=True)

print('PSNR:', psnr)
print('SSIM:', ssim)
Salin selepas log masuk

需要注意的是,这只是一个简单的示例,实际应用中可能需要更复杂的模型和更大的数据集来获得更好的结果。

Atas ialah kandungan terperinci Aplikasi teknologi AI dalam pembinaan semula resolusi super imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Bytedance Cutting melancarkan keahlian super SVIP: 499 yuan untuk langganan tahunan berterusan, menyediakan pelbagai fungsi AI Jun 28, 2024 am 03:51 AM

Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Pembantu pengekodan AI yang ditambah konteks menggunakan Rag dan Sem-Rag Jun 10, 2024 am 11:08 AM

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Tujuh Soalan Temuduga Teknikal GenAI & LLM yang Cool Jun 07, 2024 am 10:06 AM

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Bolehkah penalaan halus benar-benar membolehkan LLM mempelajari perkara baharu: memperkenalkan pengetahuan baharu boleh menjadikan model menghasilkan lebih banyak halusinasi Jun 11, 2024 pm 03:57 PM

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Untuk menyediakan tanda aras dan sistem penilaian menjawab soalan saintifik dan kompleks baharu untuk model besar, UNSW, Argonne, University of Chicago dan institusi lain bersama-sama melancarkan rangka kerja SciQAG Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Prestasi SOTA, kaedah AI ramalan pertalian protein-ligan pelbagai mod Xiamen, menggabungkan maklumat permukaan molekul buat kali pertama Jul 17, 2024 pm 06:37 PM

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Era baharu pembangunan bahagian hadapan VSCode: 12 pembantu kod AI yang sangat disyorkan Era baharu pembangunan bahagian hadapan VSCode: 12 pembantu kod AI yang sangat disyorkan Jun 11, 2024 pm 07:47 PM

Dalam dunia pembangunan bahagian hadapan, VSCode telah menjadi alat pilihan untuk banyak pembangun dengan fungsi yang berkuasa dan ekosistem pemalam yang kaya. Dalam beberapa tahun kebelakangan ini, dengan perkembangan pesat teknologi kecerdasan buatan, pembantu kod AI pada VSCode telah muncul, meningkatkan kecekapan pengekodan pembangun. Pembantu kod AI pada VSCode telah muncul seperti cendawan selepas hujan, meningkatkan kecekapan pengekodan pembangun. Ia menggunakan teknologi kecerdasan buatan untuk menganalisis kod secara bijak dan menyediakan penyiapan kod yang tepat, pembetulan ralat automatik, semakan tatabahasa dan fungsi lain, yang mengurangkan kesilapan pembangun dan kerja manual yang membosankan semasa proses pengekodan. Hari ini, saya akan mengesyorkan 12 pembantu kod AI pembangunan bahagian hadapan VSCode untuk membantu anda dalam perjalanan pengaturcaraan anda.

See all articles