


Analisis mendalam tentang prinsip kerja dan ciri-ciri model Pengubah Penglihatan (VIT).
Vision Transformer (VIT) ialah model klasifikasi imej berasaskan Transformer yang dicadangkan oleh Google. Tidak seperti model CNN tradisional, VIT mewakili imej sebagai jujukan dan mempelajari struktur imej dengan meramalkan label kelas imej. Untuk mencapai matlamat ini, VIT membahagikan imej input kepada berbilang patch dan menggabungkan piksel dalam setiap patch melalui saluran dan kemudian melakukan unjuran linear untuk mencapai dimensi input yang dikehendaki. Akhir sekali, setiap tampalan diratakan menjadi satu vektor, membentuk urutan input. Melalui mekanisme perhatian kendiri Transformer, VIT dapat menangkap hubungan antara tampalan yang berbeza dan melakukan pengekstrakan ciri dan ramalan klasifikasi yang berkesan. Kaedah perwakilan imej bersiri ini membawa idea dan kesan baharu kepada tugas penglihatan komputer.
Model Pengubah Penglihatan digunakan secara meluas dalam tugas pengecaman imej, seperti pengesanan objek, pembahagian imej, pengelasan imej dan pengecaman tindakan. Di samping itu, ia sesuai untuk pemodelan generatif dan tugas berbilang model, termasuk asas visual, menjawab soalan visual dan penaakulan visual.
Bagaimana Vision Transformer mengklasifikasikan imej?
Sebelum kita mendalami cara Vision Transformers berfungsi, kita mesti memahami asas perhatian dan perhatian berbilang kepala dalam Transformer asal.
Transformer ialah model yang menggunakan mekanisme yang dipanggil self-attention, iaitu bukan CNN mahupun LSTM, ia membina model Transformer dan dengan ketara mengatasi kaedah ini.
Mekanisme perhatian model Transformer menggunakan tiga pembolehubah: Q (Query), K (Key) dan V (Value). Ringkasnya, ia mengira berat perhatian token Pertanyaan dan token Kunci, dan mendarabkannya dengan Nilai yang dikaitkan dengan setiap Kunci. Iaitu, model Transformer mengira perkaitan (berat perhatian) antara token Pertanyaan dan token Kunci, dan mendarabkan Nilai yang dikaitkan dengan setiap Kunci.
Takrifkan Q, K, V untuk dikira sebagai satu kepala Dalam mekanisme perhatian berbilang kepala, setiap kepala mempunyai matriks unjuran sendiri W_i^Q, W_i^K, W_i^V, dan mereka mengira unjuran. menggunakan matriks ini masing-masing pemberat perhatian untuk nilai ciri.
Mekanisme perhatian berbilang kepala membolehkan pemfokusan pada bahagian jujukan yang berlainan dengan cara yang berbeza setiap kali. Ini bermakna:
Model boleh menangkap maklumat kedudukan dengan lebih baik kerana setiap kepala akan memfokus pada bahagian input yang berbeza. Gabungan mereka akan memberikan perwakilan yang lebih berkuasa.
Setiap pengepala juga akan menangkap maklumat kontekstual yang berbeza melalui perkataan yang dikaitkan secara unik.
Sekarang kita tahu mekanisme kerja model Transformer, mari kita lihat semula model Vision Transformer.
Vision Transformer ialah model yang menggunakan Transformer pada tugas pengelasan imej, yang dicadangkan pada Oktober 2020. Seni bina model hampir sama dengan Transformer asal, yang membolehkan imej dianggap sebagai input, sama seperti pemprosesan bahasa semula jadi.
Model Pengubah Penglihatan menggunakan Pengekod Transformer sebagai model asas untuk mengekstrak ciri daripada imej dan menghantar ciri yang diproses ini kepada model kepala Multi-Layer Perceptron (MLP) untuk pengelasan. Memandangkan beban pengiraan Transformer model asas sudah sangat besar, Transformer Visi menguraikan imej menjadi blok persegi sebagai mekanisme perhatian "windowing" yang ringan untuk menyelesaikan masalah tersebut.
Imej kemudiannya ditukarkan kepada tompok segi empat sama, yang diratakan dan dihantar melalui satu lapisan suapan hadapan untuk mendapatkan unjuran tampalan linear. Untuk membantu mengelaskan bit, dengan menggabungkan benam kelas yang boleh dipelajari dengan unjuran tampalan lain.
Ringkasnya, unjuran tampalan dan benam kedudukan ini membentuk matriks yang lebih besar yang tidak lama lagi akan dihantar melalui pengekod Transformer. Output pengekod Transformer kemudiannya dihantar ke perceptron berbilang lapisan untuk pengelasan imej. Ciri input menangkap intipati imej dengan sangat baik, menjadikan tugas pengelasan kepala MLP lebih mudah.
Perbandingan Penanda Aras Prestasi ViT vs. ResNet vs. MobileNet
Walaupun ViT menunjukkan potensi yang sangat baik dalam mempelajari ciri imej berkualiti tinggi, ia mengalami peningkatan prestasi dan ketepatan yang lemah. Peningkatan kecil dalam ketepatan tidak membenarkan masa jalan ViT yang lebih rendah.
berkaitan model Vision Transformer
- Kod yang diperhalusi dan model Vision Transformer pra-latihan tersedia di GitHub Google Research.
- Model Vision Transformer dilatih terlebih dahulu pada set data ImageNet dan ImageNet-21k.
- Model Vision Transformer (ViT) telah diperkenalkan dalam kertas penyelidikan persidangan bertajuk "An Image is Worth 16*16 Words: Transformers for Image Recognition at Scale" yang diterbitkan di ICLR 2021.
Atas ialah kandungan terperinci Analisis mendalam tentang prinsip kerja dan ciri-ciri model Pengubah Penglihatan (VIT).. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas
