Interaksi antara pembelajaran mendalam dan rangkaian saraf
Rangkaian saraf dan pembelajaran mendalam berkait rapat, tetapi berbeza, seperti dua sisi syiling.
Rangkaian Neural
Rangkaian saraf adalah serupa dengan otak manusia, yang terdiri daripada banyak neuron pemprosesan yang sangat saling berkaitan. Neuron ini bekerjasama untuk menyelesaikan masalah pembelajaran mesin yang kompleks dengan cara yang sangat sensitif, memberikan kita kemajuan terobosan.
Unit pengkomputeran asas dalam rangkaian saraf ialah neuron, yang menerima input dan memprosesnya melalui berbilang neuron dalam berbilang lapisan tersembunyi, dan akhirnya menjana output melalui lapisan output. Dalam pembelajaran mesin, model biasa rangkaian saraf diilhamkan oleh neuron biologi Model ini merujuk kepada rangkaian neural satu lapisan dengan hanya satu output.
Rangkaian saraf mencapai penumpuan melalui perambatan ke hadapan, kehilangan pengiraan, perambatan belakang, keturunan kecerunan, dll. Ia dipanggil rangkaian saraf tiruan (ANN) dan merupakan asas pembelajaran mendalam.
Pembelajaran Mendalam
Pembelajaran mendalam ialah algoritma yang menggunakan rangkaian saraf dalam untuk melatih data yang kompleks dan meramalkan output melalui berbilang lapisan dan nod tersembunyi. Algoritma ini boleh meniru cara otak manusia berfungsi.
Pembelajaran mesin tradisional boleh membuat ramalan dengan melengkapkan kejuruteraan ciri terlebih dahulu apabila memproses data berstruktur, manakala pembelajaran mendalam melaksanakan kedua-dua kejuruteraan ciri manual dan pembelajaran kendiri. Akibatnya, pembelajaran mendalam adalah lebih cekap dan boleh bertambah baik dari semasa ke semasa.
Pembelajaran mendalam memainkan peranan penting dalam penyelidikan dalam era digital hari ini. Walau bagaimanapun, untuk merealisasikan pembelajaran mendalam sepenuhnya, rangkaian saraf amat diperlukan. Algoritma ini dimodelkan mengikut otak manusia dan sistem saraf, memberikan bantuan besar kepada proses pembelajaran mendalam yang lebih luas. Oleh itu, rangkaian saraf dan pembelajaran mendalam tidak dapat dipisahkan.
Atas ialah kandungan terperinci Interaksi antara pembelajaran mendalam dan rangkaian saraf. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Ditulis sebelum ini, hari ini kita membincangkan bagaimana teknologi pembelajaran mendalam boleh meningkatkan prestasi SLAM berasaskan penglihatan (penyetempatan dan pemetaan serentak) dalam persekitaran yang kompleks. Dengan menggabungkan kaedah pengekstrakan ciri dalam dan pemadanan kedalaman, di sini kami memperkenalkan sistem SLAM visual hibrid serba boleh yang direka untuk meningkatkan penyesuaian dalam senario yang mencabar seperti keadaan cahaya malap, pencahayaan dinamik, kawasan bertekstur lemah dan seks yang teruk. Sistem kami menyokong berbilang mod, termasuk konfigurasi monokular, stereo, monokular-inersia dan stereo-inersia lanjutan. Selain itu, ia juga menganalisis cara menggabungkan SLAM visual dengan kaedah pembelajaran mendalam untuk memberi inspirasi kepada penyelidikan lain. Melalui percubaan yang meluas pada set data awam dan data sampel sendiri, kami menunjukkan keunggulan SL-SLAM dari segi ketepatan kedudukan dan keteguhan penjejakan.

Dalam gelombang perubahan teknologi yang pesat hari ini, Kecerdasan Buatan (AI), Pembelajaran Mesin (ML) dan Pembelajaran Dalam (DL) adalah seperti bintang terang, menerajui gelombang baharu teknologi maklumat. Ketiga-tiga perkataan ini sering muncul dalam pelbagai perbincangan dan aplikasi praktikal yang canggih, tetapi bagi kebanyakan peneroka yang baru dalam bidang ini, makna khusus dan hubungan dalaman mereka mungkin masih diselubungi misteri. Jadi mari kita lihat gambar ini dahulu. Dapat dilihat bahawa terdapat korelasi rapat dan hubungan progresif antara pembelajaran mendalam, pembelajaran mesin dan kecerdasan buatan. Pembelajaran mendalam ialah bidang khusus pembelajaran mesin dan pembelajaran mesin

Hampir 20 tahun telah berlalu sejak konsep pembelajaran mendalam dicadangkan pada tahun 2006. Pembelajaran mendalam, sebagai revolusi dalam bidang kecerdasan buatan, telah melahirkan banyak algoritma yang berpengaruh. Jadi, pada pendapat anda, apakah 10 algoritma teratas untuk pembelajaran mendalam? Berikut adalah algoritma teratas untuk pembelajaran mendalam pada pendapat saya Mereka semua menduduki kedudukan penting dari segi inovasi, nilai aplikasi dan pengaruh. 1. Latar belakang rangkaian saraf dalam (DNN): Rangkaian saraf dalam (DNN), juga dipanggil perceptron berbilang lapisan, adalah algoritma pembelajaran mendalam yang paling biasa Apabila ia mula-mula dicipta, ia dipersoalkan kerana kesesakan kuasa pengkomputeran tahun, kuasa pengkomputeran, Kejayaan datang dengan letupan data. DNN ialah model rangkaian saraf yang mengandungi berbilang lapisan tersembunyi. Dalam model ini, setiap lapisan menghantar input ke lapisan seterusnya dan

Model LSTM dwiarah ialah rangkaian saraf yang digunakan untuk pengelasan teks. Berikut ialah contoh mudah yang menunjukkan cara menggunakan LSTM dwiarah untuk tugasan pengelasan teks. Pertama, kita perlu mengimport perpustakaan dan modul yang diperlukan: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Editor |. Kulit Lobak Sejak pengeluaran AlphaFold2 yang berkuasa pada tahun 2021, saintis telah menggunakan model ramalan struktur protein untuk memetakan pelbagai struktur protein dalam sel, menemui ubat dan melukis "peta kosmik" setiap interaksi protein yang diketahui. Baru-baru ini, Google DeepMind mengeluarkan model AlphaFold3, yang boleh melakukan ramalan struktur bersama untuk kompleks termasuk protein, asid nukleik, molekul kecil, ion dan sisa yang diubah suai. Ketepatan AlphaFold3 telah dipertingkatkan dengan ketara berbanding dengan banyak alat khusus pada masa lalu (interaksi protein-ligan, interaksi asid protein-nukleik, ramalan antibodi-antigen). Ini menunjukkan bahawa dalam satu rangka kerja pembelajaran mendalam yang bersatu, adalah mungkin untuk dicapai

Rangkaian Neural Konvolusi (CNN) dan Transformer ialah dua model pembelajaran mendalam berbeza yang telah menunjukkan prestasi cemerlang pada tugasan yang berbeza. CNN digunakan terutamanya untuk tugas penglihatan komputer seperti klasifikasi imej, pengesanan sasaran dan pembahagian imej. Ia mengekstrak ciri tempatan pada imej melalui operasi lilitan, dan melakukan pengurangan dimensi ciri dan invarian ruang melalui operasi pengumpulan. Sebaliknya, Transformer digunakan terutamanya untuk tugas pemprosesan bahasa semula jadi (NLP) seperti terjemahan mesin, klasifikasi teks dan pengecaman pertuturan. Ia menggunakan mekanisme perhatian kendiri untuk memodelkan kebergantungan dalam jujukan, mengelakkan pengiraan berjujukan dalam rangkaian saraf berulang tradisional. Walaupun kedua-dua model ini digunakan untuk tugasan yang berbeza, ia mempunyai persamaan dalam pemodelan jujukan, jadi

Gambaran Keseluruhan Untuk membolehkan pengguna ModelScope menggunakan pelbagai model yang disediakan oleh platform dengan cepat dan mudah, satu set perpustakaan Python berfungsi sepenuhnya disediakan, yang termasuk pelaksanaan model rasmi ModelScope, serta alatan yang diperlukan untuk menggunakan model ini untuk inferens. , finetune dan tugas-tugas lain yang berkaitan dengan pra-pemprosesan data, pasca-pemprosesan, penilaian kesan dan fungsi lain, sambil turut menyediakan API yang ringkas dan mudah digunakan serta contoh penggunaan yang kaya. Dengan menghubungi perpustakaan, pengguna boleh menyelesaikan tugas seperti inferens model, latihan dan penilaian dengan menulis hanya beberapa baris kod Mereka juga boleh melakukan pembangunan sekunder dengan cepat atas dasar ini untuk merealisasikan idea inovatif mereka sendiri. Model algoritma yang disediakan oleh perpustakaan pada masa ini ialah:

Rangkaian neural konvolusi berfungsi dengan baik dalam tugasan menghilangkan imej. Ia menggunakan penapis yang dipelajari untuk menapis bunyi dan dengan itu memulihkan imej asal. Artikel ini memperkenalkan secara terperinci kaedah denoising imej berdasarkan rangkaian neural convolutional. 1. Gambaran Keseluruhan Rangkaian Neural Konvolusi Rangkaian saraf konvolusi ialah algoritma pembelajaran mendalam yang menggunakan gabungan berbilang lapisan konvolusi, lapisan gabungan dan lapisan bersambung sepenuhnya untuk mempelajari dan mengelaskan ciri imej. Dalam lapisan konvolusi, ciri tempatan imej diekstrak melalui operasi konvolusi, dengan itu menangkap korelasi spatial dalam imej. Lapisan pengumpulan mengurangkan jumlah pengiraan dengan mengurangkan dimensi ciri dan mengekalkan ciri utama. Lapisan bersambung sepenuhnya bertanggungjawab untuk memetakan ciri dan label yang dipelajari untuk melaksanakan pengelasan imej atau tugas lain. Reka bentuk struktur rangkaian ini menjadikan rangkaian neural konvolusi berguna dalam pemprosesan dan pengecaman imej.
