Rumah Peranti teknologi AI Google mengeluarkan ASPIRE, rangka kerja latihan model yang membolehkan AI menilai ketepatan output secara bebas

Google mengeluarkan ASPIRE, rangka kerja latihan model yang membolehkan AI menilai ketepatan output secara bebas

Jan 23, 2024 pm 05:36 PM
Google ai model bahasa yang besar

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Google baru-baru ini mengeluarkan kenyataan akhbar yang mengumumkan pelancaran rangka kerja latihan ASPIRE, yang direka khas untuk model bahasa besar. Rangka kerja ini bertujuan untuk meningkatkan keupayaan ramalan terpilih model AI.

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Google menyebut bahawa model bahasa besar sedang berkembang pesat dalam pemahaman bahasa semula jadi dan penjanaan kandungan, dan telah digunakan untuk membina pelbagai aplikasi inovatif, tetapi masih tidak sesuai untuk menggunakannya pada situasi membuat keputusan berisiko tinggi. Ini disebabkan oleh ketidakpastian dan kemungkinan "halusinasi" dalam ramalan model Oleh itu, Google telah membangunkan rangka kerja latihan ASPIRE, yang memperkenalkan mekanisme "kredibiliti" kepada satu siri model , setiap Jawapan semuanya akan mempunyai skor kebarangkalian untuk betul .

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

▲ Sumber imej Siaran akhbar Google (sama di bawah)

Di peringkat teknikal, rangka kerja latihan boleh dibahagikan kepada tiga peringkat: pelarasan khusus tugasan, pensampelan jawapan dan pembelajaran penilaian kendiri.

Peringkat "pelarasan tugas khusus" adalah untuk menjalankan latihan mendalam model bahasa berskala besar yang telah menerima latihan asas,

memfokuskan kepada pengukuhan keupayaan ramalan model. Penyelidik terutamanya memperkenalkan satu siri parameter boleh laras kepada model dan memperhalusi model bahasa pra-latihan pada set data latihan tugasan tertentu, dengan itu meningkatkan prestasi ramalan model dan membolehkan model menyelesaikan masalah tertentu dengan lebih baik.

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Peringkat kedua ialah "persampelan jawapan". Selepas penalaan halus tertentu, model boleh menggunakan parameter boleh laras yang dipelajari sebelum ini untuk menjana jawapan yang berbeza bagi setiap soalan latihan dan mencipta set data untuk pembelajaran penilaian kendiri satu siri jawapan dengan kredibiliti tinggi.

Para penyelidik menggunakan kedua-dua kaedah "Carian Pancaran" dan algoritma Rouge-L untuk menilai kualiti jawapan, dan memasukkan semula jawapan dan markah yang dijana ke dalam model untuk memulakan peringkat ketiga.

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Dalam peringkat ketiga "pembelajaran penilaian kendiri", para penyelidik menambah set parameter boleh laras pada model khusus untuk meningkatkan keupayaan penilaian kendiri model.

Matlamat peringkat ini adalah untuk membiarkan model belajar "menghakimi ketepatan jawapan output dengan sendirinya", supaya apabila model bahasa besar menjana jawapan, ia juga akan melampirkan skor kebarangkalian jawapan yang betul.

Penyelidik Google menggunakan tiga set data soal jawab, CoQA, TriviaQA dan SQuAD, untuk mengesahkan keputusan rangka kerja latihan ASPIRE Dikatakan bahawa "model kecil OPT-2.7B yang diselaraskan oleh ASPIRE jauh mengatasi OPT- yang lebih besar. model 30B." Keputusan eksperimen juga menunjukkan bahawa dengan pelarasan yang sesuai, walaupun model bahasa yang kecil boleh mengatasi model bahasa yang besar dalam beberapa senario.

可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE

Para penyelidik membuat kesimpulan bahawa

latihan rangka kerja ASPIRE boleh meningkatkan ketepatan output model bahasa besar dengan ketara, malah model yang lebih kecil boleh membuat ramalan "tepat dan yakin" selepas penalaan halus.

Atas ialah kandungan terperinci Google mengeluarkan ASPIRE, rangka kerja latihan model yang membolehkan AI menilai ketepatan output secara bebas. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Geospatial Laravel: Pengoptimuman peta interaktif dan sejumlah besar data Geospatial Laravel: Pengoptimuman peta interaktif dan sejumlah besar data Apr 08, 2025 pm 12:24 PM

Cecair memproses 7 juta rekod dan membuat peta interaktif dengan teknologi geospatial. Artikel ini meneroka cara memproses lebih dari 7 juta rekod menggunakan Laravel dan MySQL dan mengubahnya menjadi visualisasi peta interaktif. Keperluan Projek Cabaran Awal: Ekstrak Wawasan berharga menggunakan 7 juta rekod dalam pangkalan data MySQL. Ramai orang mula -mula mempertimbangkan bahasa pengaturcaraan, tetapi mengabaikan pangkalan data itu sendiri: Bolehkah ia memenuhi keperluan? Adakah penghijrahan data atau pelarasan struktur diperlukan? Bolehkah MySQL menahan beban data yang besar? Analisis awal: Penapis utama dan sifat perlu dikenalpasti. Selepas analisis, didapati bahawa hanya beberapa atribut yang berkaitan dengan penyelesaiannya. Kami mengesahkan kemungkinan penapis dan menetapkan beberapa sekatan untuk mengoptimumkan carian. Carian Peta Berdasarkan Bandar

Cara menyelesaikan MySQL tidak dapat dimulakan Cara menyelesaikan MySQL tidak dapat dimulakan Apr 08, 2025 pm 02:21 PM

Terdapat banyak sebab mengapa permulaan MySQL gagal, dan ia boleh didiagnosis dengan memeriksa log ralat. Penyebab umum termasuk konflik pelabuhan (periksa penghunian pelabuhan dan ubah suai konfigurasi), isu kebenaran (periksa keizinan pengguna yang menjalankan perkhidmatan), ralat fail konfigurasi (periksa tetapan parameter), rasuah direktori data (memulihkan data atau membina semula ruang meja), isu ruang jadual InnoDB (semak fail ibdata1) Apabila menyelesaikan masalah, anda harus menganalisisnya berdasarkan log ralat, cari punca utama masalah, dan mengembangkan tabiat sandaran data secara teratur untuk mencegah dan menyelesaikan masalah.

Cara Menggunakan MySQL Selepas Pemasangan Cara Menggunakan MySQL Selepas Pemasangan Apr 08, 2025 am 11:48 AM

Artikel ini memperkenalkan operasi pangkalan data MySQL. Pertama, anda perlu memasang klien MySQL, seperti MySqlworkbench atau Command Line Client. 1. Gunakan perintah MySQL-Uroot-P untuk menyambung ke pelayan dan log masuk dengan kata laluan akaun root; 2. Gunakan CreateTatabase untuk membuat pangkalan data, dan gunakan Pilih pangkalan data; 3. Gunakan createtable untuk membuat jadual, menentukan medan dan jenis data; 4. Gunakan InsertInto untuk memasukkan data, data pertanyaan, kemas kini data dengan kemas kini, dan padam data dengan padam. Hanya dengan menguasai langkah -langkah ini, belajar menangani masalah biasa dan mengoptimumkan prestasi pangkalan data anda boleh menggunakan MySQL dengan cekap.

Jurutera Backend Senior Remote (Platform) memerlukan kalangan Jurutera Backend Senior Remote (Platform) memerlukan kalangan Apr 08, 2025 pm 12:27 PM

Jurutera Backend Senior Remote Company Kekosongan Syarikat: Lokasi Lokasi: Jauh Pejabat Jauh Jenis: Gaji sepenuh masa: $ 130,000- $ 140,000 Penerangan Pekerjaan Mengambil bahagian dalam penyelidikan dan pembangunan aplikasi mudah alih Circle dan ciri-ciri berkaitan API awam yang meliputi keseluruhan kitaran hayat pembangunan perisian. Tanggungjawab utama kerja pembangunan secara bebas berdasarkan rubyonrails dan bekerjasama dengan pasukan react/redux/relay front-end. Membina fungsi teras dan penambahbaikan untuk aplikasi web dan bekerjasama rapat dengan pereka dan kepimpinan sepanjang proses reka bentuk berfungsi. Menggalakkan proses pembangunan positif dan mengutamakan kelajuan lelaran. Memerlukan lebih daripada 6 tahun backend aplikasi web kompleks

Bolehkah mysql kembali json Bolehkah mysql kembali json Apr 08, 2025 pm 03:09 PM

MySQL boleh mengembalikan data JSON. Fungsi JSON_EXTRACT mengekstrak nilai medan. Untuk pertanyaan yang kompleks, pertimbangkan untuk menggunakan klausa WHERE untuk menapis data JSON, tetapi perhatikan kesan prestasinya. Sokongan MySQL untuk JSON sentiasa meningkat, dan disyorkan untuk memberi perhatian kepada versi dan ciri terkini.

Memahami sifat asid: tiang pangkalan data yang boleh dipercayai Memahami sifat asid: tiang pangkalan data yang boleh dipercayai Apr 08, 2025 pm 06:33 PM

Penjelasan terperinci mengenai atribut asid asid pangkalan data adalah satu set peraturan untuk memastikan kebolehpercayaan dan konsistensi urus niaga pangkalan data. Mereka menentukan bagaimana sistem pangkalan data mengendalikan urus niaga, dan memastikan integriti dan ketepatan data walaupun dalam hal kemalangan sistem, gangguan kuasa, atau pelbagai pengguna akses serentak. Gambaran keseluruhan atribut asid Atomicity: Transaksi dianggap sebagai unit yang tidak dapat dipisahkan. Mana -mana bahagian gagal, keseluruhan transaksi dilancarkan kembali, dan pangkalan data tidak mengekalkan sebarang perubahan. Sebagai contoh, jika pemindahan bank ditolak dari satu akaun tetapi tidak meningkat kepada yang lain, keseluruhan operasi dibatalkan. Begintransaction; UpdateAcCountSsetBalance = Balance-100Wh

Mysql tidak dapat dipasang setelah memuat turun Mysql tidak dapat dipasang setelah memuat turun Apr 08, 2025 am 11:24 AM

Sebab utama kegagalan pemasangan MySQL adalah: 1. Isu kebenaran, anda perlu menjalankan sebagai pentadbir atau menggunakan perintah sudo; 2. Ketergantungan hilang, dan anda perlu memasang pakej pembangunan yang relevan; 3. Konflik pelabuhan, anda perlu menutup program yang menduduki port 3306 atau mengubah suai fail konfigurasi; 4. Pakej pemasangan adalah korup, anda perlu memuat turun dan mengesahkan integriti; 5. Pembolehubah persekitaran dikonfigurasikan dengan salah, dan pembolehubah persekitaran mesti dikonfigurasi dengan betul mengikut sistem operasi. Selesaikan masalah ini dan periksa dengan teliti setiap langkah untuk berjaya memasang MySQL.

Kunci utama MySQL boleh menjadi batal Kunci utama MySQL boleh menjadi batal Apr 08, 2025 pm 03:03 PM

Kunci utama MySQL tidak boleh kosong kerana kunci utama adalah atribut utama yang secara unik mengenal pasti setiap baris dalam pangkalan data. Jika kunci utama boleh kosong, rekod tidak dapat dikenal pasti secara unik, yang akan membawa kepada kekeliruan data. Apabila menggunakan lajur integer sendiri atau UUIDs sebagai kunci utama, anda harus mempertimbangkan faktor-faktor seperti kecekapan dan penghunian ruang dan memilih penyelesaian yang sesuai.

See all articles