Rumah Peranti teknologi AI Pemahaman awal tentang rangkaian saraf

Pemahaman awal tentang rangkaian saraf

Jan 23, 2024 pm 07:00 PM
rangkaian saraf tiruan

Pemahaman awal tentang rangkaian saraf

Unit, juga dikenali sebagai nod atau neuron, adalah teras rangkaian saraf. Setiap unit menerima satu atau lebih input, mendarab setiap input dengan pemberat, dan kemudian menambah input berwajaran kepada nilai pincang. Seterusnya, nilai ini dimasukkan ke dalam fungsi pengaktifan. Dalam rangkaian saraf, output unit boleh dihantar ke neuron lain.

Perceptron multilayer, juga dikenali sebagai rangkaian neural feedforward, kini merupakan model rangkaian saraf tiruan yang paling banyak digunakan dan paling ringkas. Ia terdiri daripada berbilang lapisan yang disambungkan antara satu sama lain, setiap lapisan menghubungkan ciri input dengan nilai sasaran. Struktur rangkaian ini dipanggil "feedforward" kerana nilai ciri input dihantar secara "forward" melalui rangkaian, dan setiap lapisan mengubah nilai ciri sehingga output akhir selaras dengan output sasaran.

Dalam rangkaian neural suapan, terdapat tiga jenis lapisan. Setiap unit mengandungi pemerhatian satu ciri dalam lapisan input. Jika terdapat 100 cerapan ciri, maka lapisan input akan mempunyai 100 nod. Lapisan keluaran menukarkan keluaran lapisan tersembunyi kepada nilai berguna untuk rangkaian saraf. Untuk melaksanakan klasifikasi binari, kita boleh menggunakan fungsi sigmoid dalam lapisan keluaran untuk menskalakan output kepada kebarangkalian kelas 0 atau 1. Lapisan tersembunyi terletak di antara lapisan input dan lapisan output dan bertanggungjawab untuk memproses nilai ciri dari lapisan input. Akhirnya, lapisan keluaran menukarnya kepada nilai yang serupa dengan kelas sasaran.

Parameter rangkaian saraf biasanya dimulakan kepada nilai rawak kecil, yang boleh datang daripada taburan Gaussian atau taburan seragam biasa. Fungsi kehilangan digunakan untuk mengukur perbezaan antara nilai keluaran rangkaian dan nilai yang diperhatikan, berbanding dengan nilai sebenar selepas disuap melalui rangkaian. Algoritma penyebaran ke hadapan digunakan untuk menentukan parameter mana yang paling banyak menyumbang kepada perbezaan antara nilai yang diramalkan dan benar. Melalui algoritma pengoptimuman, setiap berat dilaraskan mengikut saiz yang ditentukan.

Rangkaian saraf belajar daripada setiap pemerhatian dalam data latihan melalui pelbagai lelaran perambatan ke hadapan dan perambatan belakang. Bilangan kali setiap pemerhatian dihantar melalui rangkaian dipanggil zaman, dan lazimnya latihan terdiri daripada berbilang zaman untuk melaraskan parameter secara berulang.

Atas ialah kandungan terperinci Pemahaman awal tentang rangkaian saraf. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
2 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Repo: Cara menghidupkan semula rakan sepasukan
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Cara mendapatkan biji gergasi
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Terokai konsep, perbezaan, kebaikan dan keburukan RNN, LSTM dan GRU Terokai konsep, perbezaan, kebaikan dan keburukan RNN, LSTM dan GRU Jan 22, 2024 pm 07:51 PM

Dalam data siri masa, terdapat kebergantungan antara pemerhatian, jadi ia tidak bebas antara satu sama lain. Walau bagaimanapun, rangkaian saraf tradisional menganggap setiap pemerhatian sebagai bebas, yang mengehadkan keupayaan model untuk memodelkan data siri masa. Untuk menyelesaikan masalah ini, Rangkaian Neural Berulang (RNN) telah diperkenalkan, yang memperkenalkan konsep ingatan untuk menangkap ciri dinamik data siri masa dengan mewujudkan kebergantungan antara titik data dalam rangkaian. Melalui sambungan berulang, RNN boleh menghantar maklumat sebelumnya ke dalam pemerhatian semasa untuk meramalkan nilai masa hadapan dengan lebih baik. Ini menjadikan RNN alat yang berkuasa untuk tugasan yang melibatkan data siri masa. Tetapi bagaimanakah RNN mencapai ingatan seperti ini? RNN merealisasikan ingatan melalui gelung maklum balas dalam rangkaian saraf Ini adalah perbezaan antara RNN dan rangkaian saraf tradisional.

Definisi dan analisis struktur rangkaian neural kabur Definisi dan analisis struktur rangkaian neural kabur Jan 22, 2024 pm 09:09 PM

Rangkaian saraf kabur ialah model hibrid yang menggabungkan logik kabur dan rangkaian saraf untuk menyelesaikan masalah kabur atau tidak pasti yang sukar dikendalikan dengan rangkaian saraf tradisional. Reka bentuknya diilhamkan oleh kekaburan dan ketidakpastian dalam kognisi manusia, jadi ia digunakan secara meluas dalam sistem kawalan, pengecaman corak, perlombongan data dan bidang lain. Seni bina asas rangkaian neural kabur terdiri daripada subsistem kabur dan subsistem saraf. Subsistem kabur menggunakan logik kabur untuk memproses data input dan menukarnya kepada set kabur untuk menyatakan kekaburan dan ketidakpastian data input. Subsistem saraf menggunakan rangkaian saraf untuk memproses set kabur untuk tugasan seperti pengelasan, regresi atau pengelompokan. Interaksi antara subsistem kabur dan subsistem saraf menjadikan rangkaian neural kabur mempunyai keupayaan pemprosesan yang lebih berkuasa dan boleh

Mengira operan titik terapung (FLOPS) untuk rangkaian saraf Mengira operan titik terapung (FLOPS) untuk rangkaian saraf Jan 22, 2024 pm 07:21 PM

FLOPS ialah salah satu piawaian untuk penilaian prestasi komputer, digunakan untuk mengukur bilangan operasi titik terapung sesaat. Dalam rangkaian saraf, FLOPS sering digunakan untuk menilai kerumitan pengiraan model dan penggunaan sumber pengkomputeran. Ia adalah penunjuk penting yang digunakan untuk mengukur kuasa pengkomputeran dan kecekapan komputer. Rangkaian saraf ialah model kompleks yang terdiri daripada berbilang lapisan neuron yang digunakan untuk tugas seperti klasifikasi data, regresi dan pengelompokan. Latihan dan inferens rangkaian saraf memerlukan sejumlah besar pendaraban matriks, konvolusi dan operasi pengiraan lain, jadi kerumitan pengiraan adalah sangat tinggi. FLOPS (FloatingPointOperationsperSecond) boleh digunakan untuk mengukur kerumitan pengiraan rangkaian saraf untuk menilai kecekapan penggunaan sumber pengiraan model. FLOP

Kajian kes menggunakan model LSTM dwiarah untuk pengelasan teks Kajian kes menggunakan model LSTM dwiarah untuk pengelasan teks Jan 24, 2024 am 10:36 AM

Model LSTM dwiarah ialah rangkaian saraf yang digunakan untuk pengelasan teks. Berikut ialah contoh mudah yang menunjukkan cara menggunakan LSTM dwiarah untuk tugasan pengelasan teks. Pertama, kita perlu mengimport perpustakaan dan modul yang diperlukan: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

rangkaian neural convolutional sebab rangkaian neural convolutional sebab Jan 24, 2024 pm 12:42 PM

Rangkaian neural convolutional kausal ialah rangkaian neural convolutional khas yang direka untuk masalah kausalitas dalam data siri masa. Berbanding dengan rangkaian neural convolutional konvensional, rangkaian neural convolutional kausal mempunyai kelebihan unik dalam mengekalkan hubungan kausal siri masa dan digunakan secara meluas dalam ramalan dan analisis data siri masa. Idea teras rangkaian neural convolutional kausal adalah untuk memperkenalkan kausalitas dalam operasi konvolusi. Rangkaian saraf konvolusional tradisional boleh melihat data secara serentak sebelum dan selepas titik masa semasa, tetapi dalam ramalan siri masa, ini mungkin membawa kepada masalah kebocoran maklumat. Kerana keputusan ramalan pada titik masa semasa akan dipengaruhi oleh data pada titik masa akan datang. Rangkaian saraf konvolusi penyebab menyelesaikan masalah ini Ia hanya dapat melihat titik masa semasa dan data sebelumnya, tetapi tidak dapat melihat data masa depan.

Rangkaian Neural Berkembar: Analisis Prinsip dan Aplikasi Rangkaian Neural Berkembar: Analisis Prinsip dan Aplikasi Jan 24, 2024 pm 04:18 PM

Rangkaian Neural Siam ialah struktur rangkaian saraf tiruan yang unik. Ia terdiri daripada dua rangkaian neural yang sama yang berkongsi parameter dan berat yang sama. Pada masa yang sama, kedua-dua rangkaian juga berkongsi data input yang sama. Reka bentuk ini diilhamkan oleh kembar, kerana kedua-dua rangkaian saraf adalah sama dari segi struktur. Prinsip rangkaian saraf Siam adalah untuk menyelesaikan tugas tertentu, seperti padanan imej, padanan teks dan pengecaman muka, dengan membandingkan persamaan atau jarak antara dua data input. Semasa latihan, rangkaian cuba untuk memetakan data yang serupa ke wilayah bersebelahan dan data yang tidak serupa ke wilayah yang jauh. Dengan cara ini, rangkaian boleh belajar cara mengklasifikasikan atau memadankan data yang berbeza dan mencapai yang sepadan

Penghapusan imej menggunakan rangkaian saraf konvolusi Penghapusan imej menggunakan rangkaian saraf konvolusi Jan 23, 2024 pm 11:48 PM

Rangkaian neural konvolusi berfungsi dengan baik dalam tugasan menghilangkan imej. Ia menggunakan penapis yang dipelajari untuk menapis bunyi dan dengan itu memulihkan imej asal. Artikel ini memperkenalkan secara terperinci kaedah denoising imej berdasarkan rangkaian neural convolutional. 1. Gambaran Keseluruhan Rangkaian Neural Konvolusi Rangkaian saraf konvolusi ialah algoritma pembelajaran mendalam yang menggunakan gabungan berbilang lapisan konvolusi, lapisan gabungan dan lapisan bersambung sepenuhnya untuk mempelajari dan mengelaskan ciri imej. Dalam lapisan konvolusi, ciri tempatan imej diekstrak melalui operasi konvolusi, dengan itu menangkap korelasi spatial dalam imej. Lapisan pengumpulan mengurangkan jumlah pengiraan dengan mengurangkan dimensi ciri dan mengekalkan ciri utama. Lapisan bersambung sepenuhnya bertanggungjawab untuk memetakan ciri dan label yang dipelajari untuk melaksanakan pengelasan imej atau tugas lain. Reka bentuk struktur rangkaian ini menjadikan rangkaian neural konvolusi berguna dalam pemprosesan dan pengecaman imej.

Langkah-langkah untuk menulis rangkaian neural mudah menggunakan Rust Langkah-langkah untuk menulis rangkaian neural mudah menggunakan Rust Jan 23, 2024 am 10:45 AM

Rust ialah bahasa pengaturcaraan peringkat sistem yang memfokuskan pada keselamatan, prestasi dan keselarasan. Ia bertujuan untuk menyediakan bahasa pengaturcaraan yang selamat dan boleh dipercayai yang sesuai untuk senario seperti sistem pengendalian, aplikasi rangkaian dan sistem terbenam. Keselamatan Rust datang terutamanya dari dua aspek: sistem pemilikan dan pemeriksa pinjaman. Sistem pemilikan membolehkan pengkompil menyemak kod untuk ralat memori pada masa penyusunan, dengan itu mengelakkan isu keselamatan memori biasa. Dengan memaksa menyemak pemindahan pemilikan berubah pada masa penyusunan, Rust memastikan sumber memori diurus dan dikeluarkan dengan betul. Penyemak pinjaman menganalisis kitaran hayat pembolehubah untuk memastikan pembolehubah yang sama tidak akan diakses oleh berbilang rangkaian pada masa yang sama, sekali gus mengelakkan isu keselamatan bersamaan yang biasa. Dengan menggabungkan kedua-dua mekanisme ini, Rust dapat menyediakan

See all articles