Menyesuaikan diri dengan model berpangkat rendah yang besar
Penyesuaian peringkat rendah bagi model besar ialah kaedah mengurangkan kerumitan dengan menganggarkan struktur dimensi tinggi model besar dengan struktur dimensi rendah. Matlamatnya adalah untuk mencipta perwakilan model yang lebih kecil dan terurus yang masih mengekalkan prestasi yang baik. Dalam banyak tugas, maklumat berlebihan atau tidak berkaitan mungkin wujud dalam struktur dimensi tinggi model besar. Dengan mengenal pasti dan mengalih keluar lebihan ini, model yang lebih cekap boleh dibuat sambil mengekalkan prestasi asal dan boleh menggunakan lebih sedikit sumber untuk melatih dan menggunakan.
Penyesuaian peringkat rendah ialah kaedah yang boleh mempercepatkan latihan model besar sambil juga mengurangkan penggunaan memori. Prinsipnya adalah untuk membekukan berat model pra-latihan dan memperkenalkan matriks penguraian peringkat boleh dilatih ke dalam setiap lapisan seni bina Transformer, dengan itu mengurangkan dengan ketara bilangan parameter boleh dilatih untuk tugas hiliran. Kaedah ini dilaksanakan dengan menguraikan matriks asal kepada hasil darab dua matriks yang berlainan pangkat. Dengan hanya menggunakan matriks peringkat rendah untuk pengiraan, anda boleh mengurangkan bilangan parameter model, meningkatkan kelajuan latihan dan berprestasi baik dari segi kualiti model tanpa meningkatkan kependaman inferens.
Contoh penyesuaian peringkat rendah
Mengambil model GPT-3 sebagai contoh, penyesuaian peringkat rendah model besar (LoRA) ialah kaedah untuk secara tidak langsung melatih beberapa lapisan padat dalam rangkaian saraf dengan mengoptimumkan matriks penguraian pangkat dalam lapisan padat. Kelebihan LoRA ialah hanya beberapa parameter perlu diperhalusi dan bukannya melatih keseluruhan model dengan parameter penuh, sekali gus meningkatkan kecekapan operasi semasa penggunaan. Dalam model GPT-3, LoRA hanya perlu mengoptimumkan matriks penguraian peringkat sangat rendah untuk mencapai prestasi yang setanding dengan penalaan halus parameter penuh. Kaedah ini bukan sahaja sangat cekap dari segi penyimpanan dan pengiraan, tetapi juga boleh mengurangkan masalah pemasangan berlebihan dan meningkatkan keupayaan generalisasi model dengan berkesan. Melalui LoRA, model besar boleh digunakan dengan lebih fleksibel pada pelbagai senario, membawa lebih banyak kemungkinan kepada pembangunan pembelajaran mendalam.
Selain itu, idea penyesuaian peringkat rendah adalah mudah. Ia dicapai dengan menambah pintasan di sebelah PLM asal (model bahasa pra-latihan), yang melakukan pengurangan dimensi dan kemudian operasi dimensi untuk mensimulasikan dimensi intrinsik yang dipanggil. Semasa proses latihan, parameter PLM ditetapkan, dan hanya matriks pengurangan dimensi A dan matriks peningkatan dimensi B dilatih. Dimensi input dan output model kekal tidak berubah, tetapi parameter BA dan PLM ditindih pada output. Matriks pengurangan dimensi A dimulakan menggunakan taburan Gaussian rawak, manakala matriks peningkatan dimensi B dimulakan menggunakan matriks 0, yang memastikan bahawa matriks pintasan masih matriks 0 pada permulaan latihan.
Idea ini mempunyai beberapa persamaan dengan sambungan baki, yang menyerupai proses penalaan penuh dengan menggunakan kemas kini pintasan. Malah, penalaan penuh boleh dilihat sebagai kes khas LoRA, iaitu apabila r bersamaan dengan k. Ini bermakna dengan menggunakan LoRA pada semua matriks berat dan melatih semua istilah berat sebelah, sambil menetapkan pangkat r LoRA kepada pangkat k matriks berat pralatihan, kita boleh memulihkan secara kasar kuasa ekspresif penalaan penuh. Dalam erti kata lain, apabila bilangan parameter boleh dilatih meningkat, latihan LoRA cenderung kepada latihan model asal, manakala kaedah berasaskan penyesuai cenderung kepada MLP, dan kaedah berasaskan awalan cenderung kepada model yang tidak boleh mengendalikan lama. urutan input. Oleh itu, LoRA menyediakan cara yang fleksibel untuk mengimbangi bilangan parameter yang boleh dilatih dan kuasa ekspresif model.
Apakah perbezaan antara penyesuaian peringkat rendah dan pemampatan rangkaian saraf?
Penyesuaian peringkat rendah dan pemampatan rangkaian saraf mempunyai beberapa perbezaan dalam matlamat dan kaedah.
Matlamat pemampatan rangkaian saraf adalah untuk mengurangkan parameter dan ruang storan, mengurangkan kos pengiraan dan keperluan storan, sambil mengekalkan prestasi. Kaedah termasuk menukar struktur rangkaian, kuantisasi dan anggaran, dsb.
Mampatan rangkaian saraf boleh dibahagikan kepada tiga kategori: kaedah penghampiran, kuantisasi dan pemangkasan.
Kaedah anggaran menggunakan penguraian matriks atau tensor untuk membina semula sebilangan kecil parameter dan mengurangkan overhed storan rangkaian.
2) Idea utama kaedah pengkuantitian adalah untuk memetakan kemungkinan nilai parameter rangkaian dari domain nombor nyata kepada set nombor terhingga, atau untuk mewakili parameter rangkaian dengan bit yang lebih sedikit untuk mengurangkan overhed storan rangkaian .
3) Kaedah keratan akan secara langsung mengubah struktur rangkaian, yang boleh dibahagikan kepada keratan hierarki, keratan peringkat neuron dan keratan peringkat sambungan saraf mengikut butiran.
Penyesuaian peringkat rendah merujuk kepada mengurangkan kerumitan model dengan mengurangkan dimensi parameter model, dan biasanya dilaksanakan menggunakan teknik seperti penguraian matriks. Pendekatan ini sering digunakan untuk mengurangkan kos pengiraan dan keperluan penyimpanan model sambil mengekalkan keupayaan ramalan model.
Secara amnya, pemampatan rangkaian saraf ialah konsep yang lebih luas yang merangkumi pelbagai kaedah untuk mengurangkan parameter dan ruang storan rangkaian saraf. Penyesuaian peringkat rendah ialah teknik khusus yang direka untuk mengurangkan kerumitan model besar dengan menghampirinya dengan struktur dimensi rendah.
Atas ialah kandungan terperinci Menyesuaikan diri dengan model berpangkat rendah yang besar. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada
