Jadual Kandungan
Contoh Pengoptimuman Nilai Ekstrim Fungsi Algoritma Genetik Rangkaian Neural
Rumah Peranti teknologi AI Menggunakan algoritma genetik rangkaian saraf untuk menyelesaikan masalah nilai ekstrem fungsi

Menggunakan algoritma genetik rangkaian saraf untuk menyelesaikan masalah nilai ekstrem fungsi

Jan 23, 2024 pm 09:15 PM
rangkaian saraf tiruan Konsep algoritma

Menggunakan algoritma genetik rangkaian saraf untuk menyelesaikan masalah nilai ekstrem fungsi

Fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau ialah algoritma pengoptimuman yang menggunakan algoritma genetik dan rangkaian saraf secara menyeluruh. Idea terasnya ialah menggunakan model rangkaian saraf untuk menganggarkan fungsi objektif dan mencari penyelesaian optimum melalui algoritma genetik. Berbanding dengan algoritma pengoptimuman lain, algoritma genetik rangkaian saraf mempunyai keupayaan dan keteguhan carian global yang lebih kukuh, dan boleh menyelesaikan masalah nilai ekstrem fungsi tak linear yang kompleks dengan cekap. Kelebihan algoritma ini ialah ia boleh menganggarkan fungsi objektif yang kompleks melalui keupayaan pembelajaran rangkaian saraf, dan secara global mencari penyelesaian optimum melalui strategi carian algoritma genetik. Dengan menggunakan sepenuhnya kelebihan rangkaian saraf dan algoritma genetik, fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau mempunyai potensi yang luas dalam aplikasi praktikal.

Untuk fungsi tak linear yang tidak diketahui, sukar untuk mencari nilai ekstrem fungsi dengan tepat hanya melalui data input dan output fungsi tersebut. Untuk menyelesaikan masalah seperti ini, kaedah rangkaian saraf yang digabungkan dengan algoritma genetik boleh digunakan. Rangkaian saraf mempunyai keupayaan pemasangan tak linear dan boleh muat fungsi algoritma genetik mempunyai keupayaan pengoptimuman tak linear dan boleh mencari titik ekstrem fungsi. Dengan menggabungkan kedua-dua kaedah ini, nilai ekstrem fungsi boleh didapati dengan lebih tepat.

Pengoptimuman nilai ekstrem fungsi algoritma genetik rangkaian saraf terutamanya dibahagikan kepada dua langkah: Latihan rangkaian saraf BP dan pemasangan dan pengoptimuman nilai ekstrem algoritma genetik.

Pertama, gunakan rangkaian neural BP untuk melatih dan menyesuaikan data input Melalui proses pembelajaran, rangkaian saraf boleh menghampiri fungsi objektif dan dengan itu meramalkan hasil output. Matlamat teras langkah ini adalah untuk melatih rangkaian saraf supaya ia dapat menyesuaikan data input dengan tepat dan mengubah masalah menjadi masalah mencari penyelesaian yang optimum.

Kemudian, algoritma genetik digunakan untuk melaraskan pemberat rangkaian saraf, menggunakan operasi seperti pemilihan, silang dan mutasi untuk mencari penyelesaian terbaik. Tujuan utama langkah ini adalah untuk menggunakan ciri carian global dan keteguhan algoritma genetik untuk mencari kombinasi optimum berat rangkaian saraf, supaya output ramalan rangkaian saraf mencapai tahap terbaik.

Melalui dua langkah di atas, algoritma genetik rangkaian saraf berfungsi pengoptimuman nilai melampau boleh mengubah masalah nilai ekstrem fungsi tak linear kepada masalah mencari penyelesaian optimum, dan menggunakan kelebihan rangkaian saraf dan algoritma genetik untuk mencari yang optimum penyelesaian .

Perlu diingatkan bahawa fungsi algoritma genetik rangkaian saraf pengoptimuman nilai ekstrem perlu disesuaikan dan dioptimumkan untuk masalah tertentu, termasuk pemilihan parameter seperti struktur rangkaian saraf, bilangan lapisan, bilangan nod, fungsi pengaktifan, dan algoritma genetik, dsb. Pada masa yang sama, untuk masalah yang kompleks, parameter dan struktur algoritma mungkin perlu dilaraskan untuk mendapatkan hasil pengoptimuman yang lebih baik.

Contoh Pengoptimuman Nilai Ekstrim Fungsi Algoritma Genetik Rangkaian Neural

Andaikan kita mempunyai fungsi tak linear f(x,y)=x^2+y^2, dan kami berharap dapat mencari titik nilai minimum bagi fungsi ini .

Pertama, kita boleh menggunakan rangkaian neural untuk menyesuaikan fungsi ini. Kami memilih struktur rangkaian saraf yang mudah, seperti lapisan input (2 nod, sepadan dengan x dan y), lapisan tersembunyi (5 nod), dan lapisan output (1 nod, sepadan dengan nilai output fungsi) . Kami menggunakan 4000 set data latihan dan melatih serta muat melalui rangkaian saraf BP untuk membolehkan rangkaian saraf mempelajari peraturan fungsi f(x,y).

Kemudian, kami menggunakan algoritma genetik untuk mengoptimumkan rangkaian saraf terlatih. Kami menganggap berat rangkaian saraf sebagai individu, dan setiap individu mempunyai nilai kecergasan ini ialah nilai keluaran yang diramalkan oleh rangkaian saraf. Kami terus mengoptimumkan individu melalui operasi seperti pemilihan, persilangan dan mutasi sehingga kami menemui individu yang optimum, iaitu gabungan pemberat rangkaian saraf yang optimum.

Melalui fungsi algoritma genetik rangkaian saraf pengoptimuman nilai melampau, kita boleh mencari titik nilai minimum bagi fungsi f(x,y). Nilai input yang sepadan dengan titik minimum ini ialah nilai input yang sepadan dengan gabungan optimum berat rangkaian saraf. Proses pelaksanaan yang sepadan adalah seperti berikut:

import numpy as np  
from sklearn.neural_network import MLPRegressor  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import mean_squared_error  
from scipy.optimize import minimize  
  
# 定义目标函数  
def f(x):  
    return x[0]**2 + x[1]**2  
  
# 生成训练数据和测试数据  
X = np.random.rand(4000, 2)  
y = f(X)  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 训练神经网络  
mlp = MLPRegressor(hidden_layer_sizes=(5,), activation='relu', solver='adam', max_iter=1000)  
mlp.fit(X_train, y_train)  
  
# 定义遗传算法优化函数  
def nnga_optimize(x0):  
    # 定义适应度函数  
    def fitness(x):  
        return -f(x)  # 适应度函数取负值,因为我们要找极小值点  
  
    # 定义遗传算法参数  
    args = (mlp.coefs_, mlp.intercepts_)  
    options = {'maxiter': 1000}  
    # 定义约束条件,限制搜索范围在一个小区域内  
    bounds = [(0, 1), (0, 1)]  
    # 使用scipy的minimize函数进行优化  
    res = minimize(fitness, x0, args=args, bounds=bounds, method='SLSQP', options=options)  
    return res.x  
  
# 进行遗传算法优化,找到最优解  
x_opt = nnga_optimize([0.5, 0.5])  
print('最优解:', x_opt)
Salin selepas log masuk

Atas ialah kandungan terperinci Menggunakan algoritma genetik rangkaian saraf untuk menyelesaikan masalah nilai ekstrem fungsi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Apakah peranan perolehan maklumat dalam algoritma id3? Apakah peranan perolehan maklumat dalam algoritma id3? Jan 23, 2024 pm 11:27 PM

Algoritma ID3 adalah salah satu algoritma asas dalam pembelajaran pokok keputusan. Ia memilih titik perpecahan terbaik dengan mengira keuntungan maklumat setiap ciri untuk menjana pepohon keputusan. Keuntungan maklumat ialah konsep penting dalam algoritma ID3, yang digunakan untuk mengukur sumbangan ciri kepada tugas pengelasan. Artikel ini akan memperkenalkan secara terperinci konsep, kaedah pengiraan dan aplikasi perolehan maklumat dalam algoritma ID3. 1. Konsep entropi maklumat Entropi maklumat ialah konsep dalam teori maklumat, yang mengukur ketidakpastian pembolehubah rawak. Untuk nombor pembolehubah rawak diskret, dan p(x_i) mewakili kebarangkalian bahawa pembolehubah rawak X mengambil nilai x_i. surat

Pengenalan kepada algoritma Wu-Manber dan arahan pelaksanaan Python Pengenalan kepada algoritma Wu-Manber dan arahan pelaksanaan Python Jan 23, 2024 pm 07:03 PM

Algoritma Wu-Manber ialah algoritma pemadanan rentetan yang digunakan untuk mencari rentetan dengan cekap. Ia adalah algoritma hibrid yang menggabungkan kelebihan algoritma Boyer-Moore dan Knuth-Morris-Pratt untuk menyediakan padanan corak yang pantas dan tepat. Langkah algoritma Wu-Manber 1. Cipta jadual cincang yang memetakan setiap subrentetan yang mungkin bagi corak ke kedudukan corak di mana subrentetan itu berlaku. 2. Jadual cincang ini digunakan untuk mengenal pasti potensi lokasi permulaan corak dalam teks dengan cepat. 3. Lelaran melalui teks dan bandingkan setiap aksara dengan aksara yang sepadan dalam corak. 4. Jika aksara sepadan, anda boleh beralih ke aksara seterusnya dan meneruskan perbandingan. 5. Jika aksara tidak sepadan, anda boleh menggunakan jadual cincang untuk menentukan watak berpotensi seterusnya dalam corak.

Kajian kes menggunakan model LSTM dwiarah untuk pengelasan teks Kajian kes menggunakan model LSTM dwiarah untuk pengelasan teks Jan 24, 2024 am 10:36 AM

Model LSTM dwiarah ialah rangkaian saraf yang digunakan untuk pengelasan teks. Berikut ialah contoh mudah yang menunjukkan cara menggunakan LSTM dwiarah untuk tugasan pengelasan teks. Pertama, kita perlu mengimport perpustakaan dan modul yang diperlukan: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Penghapusan imej menggunakan rangkaian saraf konvolusi Penghapusan imej menggunakan rangkaian saraf konvolusi Jan 23, 2024 pm 11:48 PM

Rangkaian neural konvolusi berfungsi dengan baik dalam tugasan menghilangkan imej. Ia menggunakan penapis yang dipelajari untuk menapis bunyi dan dengan itu memulihkan imej asal. Artikel ini memperkenalkan secara terperinci kaedah denoising imej berdasarkan rangkaian neural convolutional. 1. Gambaran Keseluruhan Rangkaian Neural Konvolusi Rangkaian saraf konvolusi ialah algoritma pembelajaran mendalam yang menggunakan gabungan berbilang lapisan konvolusi, lapisan gabungan dan lapisan bersambung sepenuhnya untuk mempelajari dan mengelaskan ciri imej. Dalam lapisan konvolusi, ciri tempatan imej diekstrak melalui operasi konvolusi, dengan itu menangkap korelasi spatial dalam imej. Lapisan pengumpulan mengurangkan jumlah pengiraan dengan mengurangkan dimensi ciri dan mengekalkan ciri utama. Lapisan bersambung sepenuhnya bertanggungjawab untuk memetakan ciri dan label yang dipelajari untuk melaksanakan pengelasan imej atau tugas lain. Reka bentuk struktur rangkaian ini menjadikan rangkaian neural konvolusi berguna dalam pemprosesan dan pengecaman imej.

Algoritma Dasar Proksimal Dioptimumkan (PPO) Algoritma Dasar Proksimal Dioptimumkan (PPO) Jan 24, 2024 pm 12:39 PM

Pengoptimuman Dasar Proksimal (PPO) ialah algoritma pembelajaran pengukuhan yang direka untuk menyelesaikan masalah latihan yang tidak stabil dan kecekapan sampel yang rendah dalam pembelajaran pengukuhan mendalam. Algoritma PPO adalah berdasarkan kecerunan dasar dan melatih ejen dengan mengoptimumkan dasar untuk memaksimumkan pulangan jangka panjang. Berbanding dengan algoritma lain, PPO mempunyai kelebihan kesederhanaan, kecekapan dan kestabilan, jadi ia digunakan secara meluas dalam akademik dan industri. PPO menambah baik proses latihan melalui dua konsep utama: pengoptimuman dasar proksimal dan memotong fungsi objektif. Pengoptimuman dasar proksimal mengekalkan kestabilan latihan dengan mengehadkan saiz kemas kini dasar untuk memastikan setiap kemas kini berada dalam julat yang boleh diterima. Fungsi objektif ricih adalah idea teras algoritma PPO Ia mengemas kini strategi

Terokai konsep kaedah Bayesian dan rangkaian Bayesian secara mendalam Terokai konsep kaedah Bayesian dan rangkaian Bayesian secara mendalam Jan 24, 2024 pm 01:06 PM

Konsep kaedah Bayesian Kaedah Bayesian ialah teorem inferens statistik yang digunakan terutamanya dalam bidang pembelajaran mesin. Ia melaksanakan tugas seperti anggaran parameter, pemilihan model, purata model dan ramalan dengan menggabungkan pengetahuan sedia ada dengan data pemerhatian. Kaedah Bayesian adalah unik dalam keupayaan mereka untuk mengendalikan ketidakpastian secara fleksibel dan menambah baik proses pembelajaran dengan mengemas kini pengetahuan sedia ada secara berterusan. Kaedah ini amat berkesan apabila menangani masalah sampel kecil dan model yang kompleks, dan boleh memberikan keputusan inferens yang lebih tepat dan mantap. Kaedah Bayesian adalah berdasarkan teorem Bayes, yang menyatakan bahawa kebarangkalian hipotesis yang diberi beberapa bukti adalah sama dengan kebarangkalian bukti didarab dengan kebarangkalian terdahulu. Ini boleh ditulis sebagai: P(H|E)=P(E|H)P(H) di mana P(H|E) ialah kebarangkalian posterior hipotesis H diberi bukti E, P(

Rangkaian Neural Berkembar: Analisis Prinsip dan Aplikasi Rangkaian Neural Berkembar: Analisis Prinsip dan Aplikasi Jan 24, 2024 pm 04:18 PM

Rangkaian Neural Siam ialah struktur rangkaian saraf tiruan yang unik. Ia terdiri daripada dua rangkaian neural yang sama yang berkongsi parameter dan berat yang sama. Pada masa yang sama, kedua-dua rangkaian juga berkongsi data input yang sama. Reka bentuk ini diilhamkan oleh kembar, kerana kedua-dua rangkaian saraf adalah sama dari segi struktur. Prinsip rangkaian saraf Siam adalah untuk menyelesaikan tugas tertentu, seperti padanan imej, padanan teks dan pengecaman muka, dengan membandingkan persamaan atau jarak antara dua data input. Semasa latihan, rangkaian cuba untuk memetakan data yang serupa ke wilayah bersebelahan dan data yang tidak serupa ke wilayah yang jauh. Dengan cara ini, rangkaian boleh belajar cara mengklasifikasikan atau memadankan data yang berbeza dan mencapai yang sepadan

Langkah-langkah untuk menulis rangkaian neural mudah menggunakan Rust Langkah-langkah untuk menulis rangkaian neural mudah menggunakan Rust Jan 23, 2024 am 10:45 AM

Rust ialah bahasa pengaturcaraan peringkat sistem yang memfokuskan pada keselamatan, prestasi dan keselarasan. Ia bertujuan untuk menyediakan bahasa pengaturcaraan yang selamat dan boleh dipercayai yang sesuai untuk senario seperti sistem pengendalian, aplikasi rangkaian dan sistem terbenam. Keselamatan Rust datang terutamanya dari dua aspek: sistem pemilikan dan pemeriksa pinjaman. Sistem pemilikan membolehkan pengkompil menyemak kod untuk ralat memori pada masa penyusunan, dengan itu mengelakkan isu keselamatan memori biasa. Dengan memaksa menyemak pemindahan pemilikan berubah pada masa penyusunan, Rust memastikan sumber memori diurus dan dikeluarkan dengan betul. Penyemak pinjaman menganalisis kitaran hayat pembolehubah untuk memastikan pembolehubah yang sama tidak akan diakses oleh berbilang rangkaian pada masa yang sama, sekali gus mengelakkan isu keselamatan bersamaan yang biasa. Dengan menggabungkan kedua-dua mekanisme ini, Rust dapat menyediakan

See all articles