Rumah pembangunan bahagian belakang Tutorial Python Ketahui langkah terperinci untuk melaksanakan algoritma A* dalam Python

Ketahui langkah terperinci untuk melaksanakan algoritma A* dalam Python

Jan 23, 2024 pm 10:51 PM

以此加权图为例,用Python实现A*算法。加权图中的节点用粉红色圆圈表示,并且给出了沿节点的路径的权重。节点上方的数字代表节点的启发式值。

Ketahui langkah terperinci untuk melaksanakan algoritma A* dalam Python

首先为算法创建类。一个用于存储与起始节点的距离,另一个用于存储父节点。并将它们初始化为0,以及起始节点。

def aStarAlgo(start_node,stop_node):
open_set=set(start_node)
closed_set=set()
g={}
parents={}
g[start_node]=0
parents[start_node]=start_node
Salin selepas log masuk

找到具有最低f(n)值的相邻节点,针对到达目标节点的条件进行编码。如果不是这种情况,则将当前节点放入打开列表中,并设置其父节点。

While len(open_set)>0:
n=None
for v in open_set:
if n==None or g[v]+heuristic(v)<g[n]+heuristic(n):
n=v
if n==stop_node or Graph_nodes[n]==None:
pass
else:
for(m,weight)in get_neighbors(n):
if m not in open_set and m not in closed_set:
open_set.add(m)
parents[m]=n
g[m]=g[n]+weight
Salin selepas log masuk

如果相邻的g值低于当前节点并且在封闭列表中,则将其替换为这个新节点作为父节点。

else:
if g[m]>g[n]+weight:
g[m]=g[n]+weight
parents[m]=n
if m in closed_set:
closed_set.remove(m)
open_set.add(m)
Salin selepas log masuk

如果当前g低于前一个g,并且其相邻在open list中,则将其替换为较低的g值,并将相邻的parent更改为当前节点。

如果不在两个列表中,则将其添加到打开列表并设置其g值。

if n==None:
print(&#x27;Path does not exist!&#x27;)
return None
if n==stop_node:
path=[]
while parents[n]!=n:
path.append(n)
n=parents[n]
path.append(start_node)
path.reverse()
print(&#x27;Path found:{}&#x27;.format(path))
return path
open_set.remove(n)
closed_set.add(n)
print(&#x27;Path does not exist!&#x27;)
return None
Salin selepas log masuk

现在,定义一个函数来返回相邻节点及其距离。

def get_neighbors(v):
if v in Graph_nodes:
return Graph_nodes[v]
else:
return None
Salin selepas log masuk

此外,创建一个函数来检查启发式值。

def heuristic(n):
H_dist={
&#x27;A&#x27;:11,
&#x27;B&#x27;:6,
&#x27;C&#x27;:99,
&#x27;D&#x27;:1,
&#x27;E&#x27;:7,
&#x27;G&#x27;:0,
}
return H_dist[n]
Salin selepas log masuk

描述一下图表并调用A*函数。

Graph_nodes={
&#x27;A&#x27;:[(&#x27;B&#x27;,2),(&#x27;E&#x27;,3)],
&#x27;B&#x27;:[(&#x27;C&#x27;,1),(&#x27;G&#x27;,9)],
&#x27;C&#x27;:Node,
&#x27;E&#x27;:[(&#x27;D&#x27;,6)],
&#x27;D&#x27;:[(&#x27;G&#x27;,1)],
}
aStarAlgo(&#x27;A&#x27;,&#x27;G&#x27;)
Salin selepas log masuk

算法遍历图,找到代价最小的路径。

这是通过E => D => G。

Atas ialah kandungan terperinci Ketahui langkah terperinci untuk melaksanakan algoritma A* dalam Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: Kekuatan pengaturcaraan serba boleh Python: Kekuatan pengaturcaraan serba boleh Apr 17, 2025 am 12:09 AM

Python sangat disukai kerana kesederhanaan dan kuasa, sesuai untuk semua keperluan dari pemula hingga pemaju canggih. Kepelbagaiannya dicerminkan dalam: 1) mudah dipelajari dan digunakan, sintaks mudah; 2) perpustakaan dan kerangka yang kaya, seperti numpy, panda, dan sebagainya; 3) sokongan silang platform, yang boleh dijalankan pada pelbagai sistem operasi; 4) Sesuai untuk tugas skrip dan automasi untuk meningkatkan kecekapan kerja.

See all articles