Rumah pembangunan bahagian belakang Tutorial Python Pengenalan ringkas kepada algoritma penjejakan SORT dan contoh pelaksanaan Pythonnya

Pengenalan ringkas kepada algoritma penjejakan SORT dan contoh pelaksanaan Pythonnya

Jan 23, 2024 pm 11:18 PM
pembelajaran mesin Konsep algoritma

Pengenalan ringkas kepada algoritma penjejakan SORT dan contoh pelaksanaan Pythonnya

SORT (Penjejakan Dalam Talian Mudah dan Masa Nyata) ialah algoritma penjejakan sasaran berdasarkan penapis Kalman, yang boleh menjejaki sasaran bergerak dengan mantap dalam adegan masa nyata. Algoritma SORT pada asalnya dicadangkan oleh Alex Bewley dan lain-lain pada tahun 2016. Ia telah digunakan secara meluas dalam pelbagai aplikasi dalam bidang penglihatan komputer, seperti pengawasan video, pemanduan autonomi, navigasi robot, dll.

Algoritma SORT terutamanya berdasarkan dua idea teras: penapisan Kalman dan algoritma Hungary. Penapis Kalman ialah algoritma untuk menganggar keadaan sistem Ia boleh menggunakan model dinamik sistem dan ukuran sensor untuk meramal dan mengemas kini keadaan sistem, dengan itu meningkatkan ketepatan anggaran keadaan. Algoritma Hungary ialah algoritma yang digunakan untuk menyelesaikan masalah padanan berat maksimum dalam graf dwipartit Ia boleh mencari padanan berat maksimum diberikan graf dwipartit.

Langkah utama algoritma SORT adalah seperti berikut:

Pengesanan sasaran: Gunakan algoritma pengesanan sasaran (seperti YOLO, SSD, dll.) untuk mengekstrak maklumat sasaran dalam bingkai semasa.

Nyatakan ramalan: Untuk setiap sasaran yang dijejaki, gunakan penapis Kalman untuk meramalkan keadaannya.

Perkaitan data: Berdasarkan status ramalan dan maklumat sasaran dalam bingkai semasa, gunakan algoritma Hungary untuk melakukan perkaitan data untuk mencari sasaran yang sepadan dengan setiap sasaran yang dijejaki dalam bingkai semasa.

Kemas kini status: Untuk setiap sasaran yang dijejaki, gunakan penapis Kalman untuk mengemas kini statusnya.

Output sasaran: Keluarkan maklumat status dan hasil penjejakan setiap sasaran yang dijejaki.

Dalam penglihatan komputer, algoritma SORT boleh digunakan pada pelbagai senario pengesanan sasaran. Sebagai contoh, dalam pengawasan video, algoritma SORT boleh menjejaki sasaran bergerak dalam masa nyata, dengan itu membolehkan pengesanan dan amaran awal kelakuan tidak normal di tempat kejadian. Dalam bidang pemanduan autonomi, algoritma SORT boleh menjejaki kenderaan lain, pejalan kaki dan peserta trafik lain untuk mencapai navigasi autonomi dan mengelak halangan kenderaan. Dalam navigasi robot, algoritma SORT boleh menjejaki sasaran bergerak untuk mencapai navigasi autonomi dan mengelakkan halangan robot.

Berikut ialah contoh kod mudah yang dilaksanakan dalam Python:

#python
import numpy as np
from filterpy.kalman import KalmanFilter
from scipy.optimize import linear_sum_assignment

class Track:

def init(self,prediction,track_id,track_lifetime):
    self.prediction=np.atleast_2d(prediction)
    self.track_id=track_id
    self.track_lifetime=track_lifetime
    self.age=0
    self.total_visible_count=1
    self.consecutive_invisible_count=0

def predict(self, kf):
    self.prediction = kf.predict()
    self.age += 1

def update(self, detection, kf):
    self.prediction = kf.update(detection)
    self.total_visible_count += 1
    self.consecutive_invisible_count = 0

def mark_missed(self):
    self.consecutive_invisible_count += 1

def is_dead(self):
    return self.consecutive_invisible_count >= self.track_lifetime

class Tracker:

def init(self,track_lifetime,detection_variance,process_variance):
    self.next_track_id=0
    self.tracks=[]
    self.track_lifetime=track_lifetime
    self.detection_variance=detection_variance
    self.process_variance=process_variance
    self.kf=KalmanFilter(dim_x=4,dim_z=2)
    self.kf.F=np.array([[1,0,1,0],
                    [0,1,0,1],
                    [0,0,1,0],
                    [0,0,0,1]])
    self.kf.H=np.array([[1,0,0,0],
                    [0,1,0,0]])
    self.kf.R=np.array([[self.detection_variance,0],
                    [0,self.detection_variance]])
    self.kf.Q=np.array([[self.process_variance,0,0,0],
                    [0,self.process_variance,0,0],
                    [0,0,self.process_variance,0],
                    [0,0,0,self.process_variance]])

def update(self, detections):
    # predict track positions using Kalman filter
    for track in self.tracks:
        track.predict(self.kf)

    # associate detections with tracks using Hungarian algorithm
    if len(detections) > 0:
        num_tracks = len(self.tracks)
        num_detections = len(detections)
        cost_matrix = np.zeros((num_tracks, num_detections))
        for i, track in enumerate(self.tracks):
            for j, detection in enumerate(detections):
                diff = track.prediction - detection
                distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2)
                cost_matrix[i,j] = distance
        row_indices, col_indices = linear_sum_assignment(cost_matrix)
        unassigned_tracks = set(range(num_tracks)) - set(row_indices)
        unassigned_detections = set(range(num_detections)) - set(col_indices)
        for i, j in zip(row_indices, col_indices):
            self.tracks[i].update(detections[j], self.kf)
        for i in unassigned_tracks:
            self.tracks[i].mark_missed()
        for j in unassigned_detections:
            new_track = Track(detections[j], self.next_track_id, self.track_lifetime)
            self.tracks.append(new_track)
            self.next_track_id += 1

    # remove dead tracks
    self.tracks = [track for track in self.tracks if not track.is_dead()]

    # return list of track positions
    return [track.prediction.tolist()[0] for track in self.tracks]
Salin selepas log masuk

Kod di atas melaksanakan algoritma penjejakan SORT yang mudah, menggunakan penapis Kalman untuk meramal dan menganggar kedudukan dan halaju sasaran, dan kemudian menggunakan algoritma Hungary untuk melaksanakan menjejaki pada sasaran Persatuan, dan akhirnya menentukan sama ada sasaran itu mati berdasarkan bilangan kali berturut-turut yang tidak kelihatan sasaran dan mengeluarkan sasaran yang mati. Kod di atas melaksanakan algoritma penjejakan SORT yang mudah, menggunakan penapis Kalman untuk meramal dan menganggar kedudukan dan kelajuan sasaran, kemudian menggunakan algoritma Hungary untuk mengaitkan sasaran, dan akhirnya menilai sama ada sasaran telah mati dan mengalih keluar kematian berdasarkan nombor masa yang tidak kelihatan berturut-turut daripada sasaran.

Selain algoritma SORT, terdapat banyak algoritma penjejakan sasaran lain, seperti penapis Kalman, penapis zarah, penjejakan berbilang sasaran, dll. Setiap algoritma mempunyai senario, kelebihan dan keburukan yang berkenaan. Dalam aplikasi praktikal, adalah perlu untuk memilih algoritma yang sesuai untuk penjejakan sasaran berdasarkan senario dan keperluan tertentu.

Atas ialah kandungan terperinci Pengenalan ringkas kepada algoritma penjejakan SORT dan contoh pelaksanaan Pythonnya. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1655
14
Tutorial PHP
1255
29
Tutorial C#
1228
24
15 alat anotasi imej percuma sumber terbuka disyorkan 15 alat anotasi imej percuma sumber terbuka disyorkan Mar 28, 2024 pm 01:21 PM

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

See all articles