


Teknik lanjutan dan aplikasi praktikal penapisan data Pandas
Pandas ialah alat pemprosesan dan analisis data yang berkuasa Ia menyediakan banyak fungsi dan kaedah yang fleksibel untuk menapis dan memproses data dengan mudah. Artikel ini akan memperkenalkan beberapa teknik lanjutan untuk penapisan data Pandas dan memberikan contoh kod khusus melalui kes sebenar.
1. Penapisan data asas
Panda menyediakan pelbagai kaedah untuk melakukan penapisan asas data, seperti menggunakan indeks Boolean, kaedah loc atau iloc, dsb. Berikut ialah beberapa kes penapisan data asas biasa.
- Penapisan indeks Boolean
Indeks Boolean boleh digunakan untuk menapis data berdasarkan syarat tertentu. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis pelajar dengan skor lebih daripada 60 mata. Ia boleh dilaksanakan menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50] } df = pd.DataFrame(data) df_filtered = df[df['成绩'] > 60] print(df_filtered)
- penapisan kaedah loc
kaedah loc boleh menapis data berdasarkan label baris dan label lajur. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis gred dan umur pelajar bernama Zhang San dan Li Si. Ini boleh dicapai menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], '年龄': [18, 19, 20, 21] } df = pd.DataFrame(data) df_filtered = df.loc[df['姓名'].isin(['张三', '李四']), ['成绩', '年龄']] print(df_filtered)
2. Penapisan data lanjutan
Selain kaedah penapisan data asas, Pandas juga menyediakan banyak teknik penapisan data lanjutan, seperti menggunakan kaedah pertanyaan dan menggunakan objek indeks MultiIndex untuk berbilang -penapisan peringkat. Di bawah adalah beberapa ilustrasi kes.
- penapisan kaedah pertanyaan
kaedah pertanyaan boleh menapis data melalui sintaks seperti SQL. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar dan kami ingin menapis pelajar yang markahnya melebihi 60 dan berumur antara 18 dan 20 tahun. Anda boleh menggunakan kod berikut untuk mencapai ini:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], '年龄': [18, 19, 20, 21] } df = pd.DataFrame(data) df_filtered = df.query('成绩 > 60 and 18 <= 年龄 <= 20') print(df_filtered)
- Gunakan penapisan MultiIndex
Jika bingkai data mempunyai berbilang peringkat indeks, anda boleh menggunakan objek MultiIndex untuk penapisan berbilang peringkat. Sebagai contoh, kami mempunyai bingkai data yang mengandungi maklumat pelajar Indeks termasuk dua peringkat: kelas dan nombor pelajar. Ini boleh dicapai menggunakan kod berikut:
import pandas as pd data = { '姓名': ['张三', '李四', '王五', '赵六'], '成绩': [80, 70, 90, 50], } index = pd.MultiIndex.from_tuples([('1班', '001'), ('1班', '002'), ('2班', '001'), ('2班', '002')]) df = pd.DataFrame(data, index=index) df_filtered = df.loc[('1班', ['001', '002']), :] print(df_filtered)
3. Analisis Kes
Kini kami mengambil set data sebenar sebagai contoh untuk menggambarkan lagi teknik lanjutan penapisan data Pandas. Katakan kita mempunyai set data jualan kereta, yang mengandungi maklumat seperti jenama kenderaan, model, volum jualan dan volum jualan. Kami mahu menapis model dengan jualan lebih daripada 1,000 unit dan jualan lebih daripada 1 juta. Berikut ialah contoh kod:
import pandas as pd data = { '品牌': ['宝马', '奥迪', '奔驰', '大众'], '型号': ['X3', 'A6', 'E级', '朗逸'], '销售量': [1200, 800, 1500, 900], '销售额': [1200, 900, 1800, 800] } df = pd.DataFrame(data) df_filtered = df.query('销售量 > 1000 and 销售额 > 1000000') print(df_filtered)
Melalui kod di atas, kami berjaya menapis model dengan jualan lebih daripada 1,000 unit dan jualan lebih daripada 1 juta yuan.
Ringkasnya, Pandas menyediakan pelbagai fungsi dan kaedah penapisan data, daripada indeks Boolean asas, kaedah loc dan iloc kepada kaedah pertanyaan lanjutan dan penapisan MultiIndex, yang boleh memenuhi keperluan penapisan data dalam senario yang berbeza. Kes di atas menunjukkan beberapa teknik dan aplikasi penapisan data biasa, dan berharap dapat membantu pembaca dalam aplikasi praktikal.
Atas ialah kandungan terperinci Teknik lanjutan dan aplikasi praktikal penapisan data Pandas. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Fastapi ...
