RBF ialah model tak linear berdasarkan rangkaian saraf, termasuk lapisan input, lapisan tersembunyi dan lapisan output, dan digunakan secara meluas dalam pembelajaran mendalam. Ia pertama kali dicadangkan pada tahun 1988 dan mempunyai struktur rangkaian hadapan.
Model RBF adalah berdasarkan fungsi asas jejari sebagai fungsi pengaktifan lapisan tersembunyi, biasanya menggunakan fungsi Gaussian atau fungsi lain. Fungsi asas jejari adalah bentuk fungsi biasa.
phi(x) = e^{-gamma|x - c|^2}
Fungsi fungsi ini adalah untuk memetakan vektor input x ke ruang dimensi tinggi melalui fungsi asas jejari. Antaranya, c mewakili pusat neuron lapisan tersembunyi, gamma mewakili parameter lebar jalur bagi fungsi asas jejari, dan |cdot| mewakili panjang modul vektor. Fungsi asas jejari adalah tempatan dan hanya berfungsi berhampiran pusat. Pemetaan ini boleh menjadikan data input lebih mudah untuk diasingkan dalam ruang dimensi tinggi.
Proses latihan model RBF dibahagikan kepada dua peringkat: pemilihan pusat dan penentuan parameter. Pertama, dalam peringkat pemilihan tengah, kita perlu menentukan pusat neuron lapisan tersembunyi. Langkah ini boleh diselesaikan menggunakan algoritma pengelompokan, seperti algoritma K-Means, atau kaedah lain. Seterusnya, dalam peringkat penentuan parameter, kita perlu menentukan parameter lebar jalur bagi fungsi asas jejarian dan berat lapisan keluaran. Untuk mencapai langkah ini, kaedah kuasa dua terkecil atau algoritma pengoptimuman lain boleh digunakan.
Model RBF mempunyai kelebihan berikut:
Walau bagaimanapun, model RBF juga mempunyai beberapa kelemahan:
Secara amnya, model RBF ialah model pembelajaran mendalam yang mudah dan berkesan yang berprestasi baik dalam menangani masalah bukan linear serta mempunyai kebolehtafsiran dan kelajuan ramalan yang baik. Walau bagaimanapun, proses latihan model RBF agak rumit, memerlukan dua peringkat pemilihan pusat dan penentuan parameter Pada masa yang sama, kesan pemprosesan data berdimensi tinggi mungkin tidak begitu baik perlu untuk memilih model yang sesuai mengikut masalah tertentu.
Atas ialah kandungan terperinci Terokai definisi dan ciri model dalam Rbf. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!