Jadual Kandungan
Langkah latihan model ramalan dinamik
Kaedah pengesahan model ramalan dinamik
Contoh Ramalan Dinamik
Rumah Peranti teknologi AI Proses latihan, kaedah pengesahan dan demonstrasi kes untuk mencapai ramalan dinamik

Proses latihan, kaedah pengesahan dan demonstrasi kes untuk mencapai ramalan dinamik

Jan 25, 2024 pm 03:00 PM
pembelajaran mesin

Proses latihan, kaedah pengesahan dan demonstrasi kes untuk mencapai ramalan dinamik

Ramalan dinamik memainkan peranan penting dalam pembelajaran mesin. Ia membolehkan model meramal dalam masa nyata berdasarkan data input baharu dan menyesuaikan diri dengan keadaan yang berubah-ubah. Model ramalan dinamik berdasarkan pembelajaran mesin digunakan secara meluas dalam ramalan dan analisis masa nyata dalam pelbagai industri, dan memainkan peranan panduan penting dalam ramalan data dan analisis aliran masa hadapan. Melalui algoritma kecerdasan buatan, pembelajaran mesin membolehkan komputer belajar secara automatik daripada data sedia ada dan membuat ramalan tentang data baharu, dengan itu terus meningkatkan diri mereka sendiri. Keupayaan ramalan dinamik ini menjadikan pembelajaran mesin boleh digunakan secara meluas dalam pelbagai bidang.

Langkah latihan model ramalan dinamik

Latihan model ramalan dinamik terutamanya termasuk langkah berikut:

1 Pengumpulan data: Pertama, anda perlu mengumpul data untuk melatih model, yang biasanya termasuk data siri masa dan data statik .

2. Prapemprosesan data: Bersihkan, denoise, normalkan, dsb. data yang dikumpul untuk menjadikannya lebih sesuai untuk model latihan.

3. Pengekstrakan ciri: Ekstrak ciri yang berkaitan dengan sasaran ramalan daripada data, termasuk ciri siri masa seperti arah aliran, bermusim dan berkala.

4 Pemilihan model: Pilih algoritma dan model pembelajaran mesin yang sesuai untuk latihan, seperti ARIMA, SVM, rangkaian saraf, dsb.

5 Latihan model: Gunakan algoritma dan model yang dipilih untuk melatih data yang diproses, melaraskan parameter model dan mengoptimumkan prestasi model.

6 Penilaian model adalah untuk menguji model terlatih dan mengira ketepatan ramalan, ralat dan penunjuk lain untuk memastikan prestasi model memenuhi keperluan.

7 Penerapan model: Gunakan model terlatih ke aplikasi sebenar untuk ramalan masa nyata atau ramalan berkala.

Latihan model ramalan dinamik ialah proses berulang, yang memerlukan pelarasan berterusan parameter model dan pengoptimuman prestasi model untuk mencapai hasil ramalan yang lebih baik.

Kaedah pengesahan model ramalan dinamik

Untuk memastikan ketepatan ramalan dan kebolehpercayaan model, model perlu diuji. Kaedah ujian model ramalan dinamik terutamanya termasuk yang berikut:

1) Ujian baki: Dengan menjalankan ujian statistik ke atas baki model ramalan, seperti ujian normaliti, ujian autokorelasi, dsb., kualiti model ramalan dinilai. .

2) Penunjuk penilaian model: Gunakan beberapa penunjuk penilaian untuk menilai model ramalan, seperti ralat min kuasa dua, ralat purata kuasa dua, min ralat mutlak, dsb., untuk mengukur ketepatan ramalan model.

3) Kaedah ujian belakang: Gunakan model untuk meramal data sejarah, dan bandingkan keputusan ramalan dengan keputusan sebenar untuk menilai keupayaan ramalan model.

4) Pengesahan silang: Bahagikan set data kepada set latihan dan set ujian, latih model pada set latihan, dan kemudian nilaikan keupayaan ramalan model pada set ujian.

5) Penilaian masa nyata: Gunakan model untuk ramalan data masa nyata dan nilaikan keupayaan ramalan model dalam masa nyata, seperti menggunakan teknologi rolling window untuk ramalan dan penilaian masa nyata.

Kaedah pemeriksaan yang berbeza sesuai untuk situasi yang berbeza Perlu memilih kaedah pemeriksaan yang sesuai mengikut masalah dan ciri data tertentu. Pada masa yang sama, keputusan ujian hanya sebagai rujukan Dalam aplikasi praktikal, faktor lain perlu dipertimbangkan, seperti keupayaan generalisasi dan kestabilan model.

Contoh Ramalan Dinamik

Di penghujung artikel, satu contoh mudah diperkenalkan untuk melaksanakan ramalan dinamik menggunakan model Python dan ARIMA:

Pertama, kita perlu mengimport perpustakaan yang diperlukan:

<code>import pandas as pd  from statsmodels.tsa.arima.model import ARIMA  from matplotlib import pyplot as plt</code>
Salin selepas log masuk

Seterusnya, kita menganggap bahawa kita mempunyai satu set fail CSV data jualan dengan tarikh dan jualan:

<code># 读取数据  data = pd.read_csv('sales_data.csv')    # 提取日期和销售额作为特征和目标变量  dates = pd.to_datetime(data['date'])  sales = data['sales']    # 将日期转换为时间序列格式  time_series = pd.Series(sales, index=dates)</code>
Salin selepas log masuk

Kemudian, kita boleh menggunakan model ARIMA untuk melatih data siri masa:

<code># 拟合ARIMA模型  model = ARIMA(time_series, order=(5,1,0))  model_fit = model.fit()</code>
Salin selepas log masuk

Seterusnya, kita boleh menggunakan model terlatih untuk membuat ramalan:

<code># 生成预测数据  forecast = model_fit.forecast(steps=10)  # 预测未来10个时间点的销售额    # 绘制预测结果和实际数据的对比图  plt.plot(time_series.index, time_series, label='Actual Sales')  plt.plot(pd.date_range(time_series.index[-1], periods=10), forecast[0], label='Forecast')  plt.legend()  plt.show()</code>
Salin selepas log masuk

Dalam contoh ini, kami menggunakan model ARIMA untuk meramalkan data jualan secara dinamik. Mula-mula, baca fail data yang mengandungi tarikh dan jualan, dan tukar tarikh ke dalam format siri masa. Kemudian, gunakan model ARIMA untuk memuatkan data siri masa dan menjana data ramalan. Akhir sekali, keputusan ramalan dibandingkan secara visual dengan data sebenar untuk menilai kesan ramalan model dengan lebih baik.

Atas ialah kandungan terperinci Proses latihan, kaedah pengesahan dan demonstrasi kes untuk mencapai ramalan dinamik. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Akan R.E.P.O. Ada Crossplay?
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

15 alat anotasi imej percuma sumber terbuka disyorkan 15 alat anotasi imej percuma sumber terbuka disyorkan Mar 28, 2024 pm 01:21 PM

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Lima sekolah pembelajaran mesin yang anda tidak tahu Lima sekolah pembelajaran mesin yang anda tidak tahu Jun 05, 2024 pm 08:51 PM

Pembelajaran mesin ialah cabang penting kecerdasan buatan yang memberikan komputer keupayaan untuk belajar daripada data dan meningkatkan keupayaan mereka tanpa diprogramkan secara eksplisit. Pembelajaran mesin mempunyai pelbagai aplikasi dalam pelbagai bidang, daripada pengecaman imej dan pemprosesan bahasa semula jadi kepada sistem pengesyoran dan pengesanan penipuan, dan ia mengubah cara hidup kita. Terdapat banyak kaedah dan teori yang berbeza dalam bidang pembelajaran mesin, antaranya lima kaedah yang paling berpengaruh dipanggil "Lima Sekolah Pembelajaran Mesin". Lima sekolah utama ialah sekolah simbolik, sekolah sambungan, sekolah evolusi, sekolah Bayesian dan sekolah analogi. 1. Simbolisme, juga dikenali sebagai simbolisme, menekankan penggunaan simbol untuk penaakulan logik dan ekspresi pengetahuan. Aliran pemikiran ini percaya bahawa pembelajaran adalah proses penolakan terbalik, melalui sedia ada

See all articles