Panduan lengkap untuk menghuraikan fungsi NumPy
NumPy (Numerical Python) ialah perpustakaan pengkomputeran saintifik Python sumber terbuka yang menyediakan objek dan alatan tatasusunan berbilang dimensi untuk beroperasi pada tatasusunan. Ia merupakan salah satu perpustakaan teras ekosistem sains data Python dan digunakan secara meluas dalam bidang seperti pengkomputeran saintifik, analisis data dan pembelajaran mesin. Artikel ini akan menganalisis fungsi yang biasa digunakan dalam perpustakaan NumPy satu demi satu, termasuk penciptaan tatasusunan, operasi tatasusunan, fungsi matematik, fungsi statistik, algebra linear, dsb., dan menyediakan contoh kod khusus.
- Array Creation
NumPy menyediakan pelbagai kaedah untuk mencipta tatasusunan boleh dibuat dengan menentukan dimensi, jenis data dan nilai permulaan. Fungsi yang biasa digunakan ialah:
1.1 numpy.array(): Buat tatasusunan daripada senarai atau tupel.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr) # 输出:[1 2 3 4 5]
1.2 numpy.zeros(): Buat tatasusunan semua-sifar dimensi yang ditentukan.
import numpy as np arr = np.zeros((3, 4)) print(arr) """ 输出: [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] """
1.3 numpy.ones(): Buat tatasusunan semua-satu dimensi yang ditentukan.
import numpy as np arr = np.ones((2, 3)) print(arr) """ 输出: [[1. 1. 1.] [1. 1. 1.]] """
1.4 numpy.arange(): Buat tatasusunan aritmetik.
import numpy as np arr = np.arange(0, 10, 2) print(arr) # 输出:[0 2 4 6 8]
- Operasi tatasusunan
NumPy menyediakan banyak fungsi untuk operasi tatasusunan, termasuk operasi bentuk, pengindeksan dan penghirisan, pengembangan dan susun, dan transpose tatasusunan. Fungsi yang biasa digunakan ialah:
2.1 reshape(): Tukar bentuk tatasusunan.
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) new_arr = arr.reshape((3, 2)) print(new_arr) """ 输出: [[1 2] [3 4] [5 6]] """
2.2 pengindeksan dan penghirisan: Memanipulasi tatasusunan melalui pengindeksan dan penghirisan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[2]) # 输出:3 print(arr[1:4]) # 输出:[2 3 4] print(arr[:3]) # 输出:[1 2 3] print(arr[-3:]) # 输出:[3 4 5]
2.3 concatenate(): Gabungkan dua atau lebih tatasusunan.
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr = np.concatenate((arr1, arr2)) print(arr) # 输出:[1 2 3 4 5 6]
2.4 transpose(): Transpose array.
import numpy as np arr = np.array([[1, 2], [3, 4]]) new_arr = np.transpose(arr) print(new_arr) """ 输出: [[1 3] [2 4]] """
- Fungsi matematik
NumPy menyediakan pelbagai fungsi matematik, seperti operasi berangka, fungsi trigonometri, fungsi logaritma, fungsi eksponen, dsb. Fungsi yang biasa digunakan ialah:
3.1 np.mean(): Kira purata tatasusunan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) mean = np.mean(arr) print(mean) # 输出:3.0
3.2 np.sin(): Kira nilai sinus bagi elemen tatasusunan.
import numpy as np arr = np.array([0, np.pi/2, np.pi]) sin = np.sin(arr) print(sin) # 输出:[0. 1. 1.2246468e-16]
3.3 np.exp(): Lakukan operasi eksponen pada elemen tatasusunan.
import numpy as np arr = np.array([1, 2, 3]) exp = np.exp(arr) print(exp) # 输出:[ 2.71828183 7.3890561 20.08553692]
- Fungsi statistik
NumPy menyediakan fungsi statistik yang biasa digunakan, termasuk maksimum, minimum, median, varians dan sisihan piawai, dsb. Fungsi yang biasa digunakan ialah:
4.1 np.max(): Kira nilai maksimum tatasusunan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) max_value = np.max(arr) print(max_value) # 输出:5
4.2 np.min(): Kira nilai minimum tatasusunan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) min_value = np.min(arr) print(min_value) # 输出:1
4.3 np.median(): Kira median tatasusunan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) median = np.median(arr) print(median) # 输出:3.0
4.4 np.var(): Kira varians tatasusunan.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) variance = np.var(arr) print(variance) # 输出:2.0
- Linear Algebra
NumPy menyediakan fungsi operasi algebra linear asas, seperti pendaraban matriks, penyongsangan matriks, penentu matriks, dll. Fungsi yang biasa digunakan ialah:
5.1 np.dot(): Kira hasil darab titik dua tatasusunan.
import numpy as np arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[5, 6], [7, 8]]) dot_product = np.dot(arr1, arr2) print(dot_product) """ 输出: [[19 22] [43 50]] """
5.2 np.linalg.inv(): Kira songsangan matriks.
import numpy as np arr = np.array([[1, 2], [3, 4]]) inverse = np.linalg.inv(arr) print(inverse) """ 输出: [[-2. 1. ] [ 1.5 -0.5]] """
Di atas hanyalah sebahagian daripada fungsi dalam perpustakaan NumPy Dengan memahami cara menggunakan fungsi biasa ini, kami boleh menggunakan NumPy dengan lebih cekap untuk melaksanakan tugas pengkomputeran seperti operasi tatasusunan, operasi matematik, analisis statistik dan algebra linear. Pada masa yang sama, dengan kajian mendalam terhadap dokumen perpustakaan NumPy yang berkaitan, kami boleh menemui fungsi dan fungsi yang lebih berkuasa untuk memberikan sokongan yang kukuh untuk kerja pengkomputeran saintifik kami.
Atas ialah kandungan terperinci Panduan lengkap untuk menghuraikan fungsi NumPy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bahasa Go menyediakan dua teknologi penciptaan fungsi dinamik: penutupan dan refleksi. penutupan membenarkan akses kepada pembolehubah dalam skop penutupan, dan refleksi boleh mencipta fungsi baharu menggunakan fungsi FuncOf. Teknologi ini berguna dalam menyesuaikan penghala HTTP, melaksanakan sistem yang sangat boleh disesuaikan dan membina komponen boleh pasang.

Dalam penamaan fungsi C++, adalah penting untuk mempertimbangkan susunan parameter untuk meningkatkan kebolehbacaan, mengurangkan ralat dan memudahkan pemfaktoran semula. Konvensyen susunan parameter biasa termasuk: tindakan-objek, objek-tindakan, makna semantik dan pematuhan perpustakaan standard. Susunan optimum bergantung pada tujuan fungsi, jenis parameter, kemungkinan kekeliruan dan konvensyen bahasa.

Kunci untuk menulis fungsi Java yang cekap dan boleh diselenggara ialah: pastikan ia mudah. Gunakan penamaan yang bermakna. Mengendalikan situasi khas. Gunakan keterlihatan yang sesuai.

1. Fungsi SUM digunakan untuk menjumlahkan nombor dalam lajur atau sekumpulan sel, contohnya: =SUM(A1:J10). 2. Fungsi AVERAGE digunakan untuk mengira purata nombor dalam lajur atau sekumpulan sel, contohnya: =AVERAGE(A1:A10). 3. Fungsi COUNT, digunakan untuk mengira bilangan nombor atau teks dalam lajur atau sekumpulan sel, contohnya: =COUNT(A1:A10) 4. Fungsi IF, digunakan untuk membuat pertimbangan logik berdasarkan syarat yang ditentukan dan mengembalikan hasil yang sepadan.

Kelebihan parameter lalai dalam fungsi C++ termasuk memudahkan panggilan, meningkatkan kebolehbacaan dan mengelakkan ralat. Kelemahannya ialah fleksibiliti terhad dan sekatan penamaan. Kelebihan parameter variadic termasuk fleksibiliti tanpa had dan pengikatan dinamik. Kelemahan termasuk kerumitan yang lebih besar, penukaran jenis tersirat dan kesukaran dalam penyahpepijatan.

Faedah fungsi mengembalikan jenis rujukan dalam C++ termasuk: Peningkatan prestasi: Melewati rujukan mengelakkan penyalinan objek, sekali gus menjimatkan memori dan masa. Pengubahsuaian langsung: Pemanggil boleh mengubah suai secara langsung objek rujukan yang dikembalikan tanpa menugaskannya semula. Kesederhanaan kod: Lulus melalui rujukan memudahkan kod dan tidak memerlukan operasi penugasan tambahan.

Pengendalian pengecualian dalam C++ boleh dipertingkatkan melalui kelas pengecualian tersuai yang menyediakan mesej ralat khusus, maklumat kontekstual dan melaksanakan tindakan tersuai berdasarkan jenis ralat. Tentukan kelas pengecualian yang diwarisi daripada std::exception untuk memberikan maklumat ralat tertentu. Gunakan kata kunci lontaran untuk membuang pengecualian tersuai. Gunakan dynamic_cast dalam blok try-catch untuk menukar pengecualian yang ditangkap kepada jenis pengecualian tersuai. Dalam kes sebenar, fungsi open_file membuang pengecualian FileNotFoundException Menangkap dan mengendalikan pengecualian boleh memberikan mesej ralat yang lebih spesifik.

Perbezaan antara fungsi PHP tersuai dan fungsi yang dipratentukan ialah: Skop: Fungsi tersuai terhad kepada skop definisinya, manakala fungsi yang dipratentukan boleh diakses di seluruh skrip. Cara mentakrifkan: Fungsi tersuai ditakrifkan menggunakan kata kunci fungsi, manakala fungsi yang dipratakrifkan ditakrifkan oleh kernel PHP. Lulus parameter: Fungsi tersuai menerima parameter, manakala fungsi yang dipratentukan mungkin tidak memerlukan parameter. Kebolehlanjutan: Fungsi tersuai boleh dibuat mengikut keperluan, manakala fungsi yang dipratentukan terbina dalam dan tidak boleh diubah suai.
