


Kemahiran aplikasi yang cekap untuk menguasai operasi penghirisan numpy dengan cepat
Petua aplikasi yang cekap untuk kaedah operasi hirisan numpy
Pengenalan:
NumPy ialah salah satu perpustakaan pengkomputeran saintifik yang paling biasa digunakan dalam Python, yang menyediakan alatan yang cekap untuk operasi tatasusunan dan operasi matematik. Dalam NumPy, penghirisan ialah operasi penting dan biasa digunakan yang membolehkan kami memilih bahagian tertentu tatasusunan atau melakukan transformasi tertentu. Artikel ini akan memperkenalkan beberapa teknik aplikasi yang cekap menggunakan kaedah operasi penghirisan NumPy dan memberikan contoh kod khusus.
1. Operasi penghirisan tatasusunan satu dimensi
1 Operasi penghirisan asas
Operasi penghirisan tatasusunan satu dimensi adalah serupa dengan operasi penghirisan dalam Python. Berikut ialah beberapa operasi penghirisan biasa:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 提取第3个到第5个元素 sliced_arr = arr[2:5] # [3 4 5] # 提取前4个元素 sliced_arr = arr[:4] # [1 2 3 4] # 提取从第5个元素到最后一个元素 sliced_arr = arr[4:] # [5 6 7 8 9] # 提取倒数第3个到第2个元素 sliced_arr = arr[-3:-1] # [7 8]
2. Operasi penghirisan saiz langkah
Selain operasi penghirisan asas, kami juga boleh melakukan penghirisan dengan menentukan saiz langkah. Berikut adalah beberapa operasi penghirisan saiz langkah biasa:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 每隔2个取一个元素 sliced_arr = arr[::2] # [1 3 5 7 9] # 从第3个元素开始,每隔2个取一个元素 sliced_arr = arr[2::2] # [3 5 7 9] # 倒序提取所有元素 sliced_arr = arr[::-1] # [9 8 7 6 5 4 3 2 1]
2. Operasi penghirisan tatasusunan berbilang dimensi
1. Operasi penghirisan asas
Apabila berurusan dengan tatasusunan berbilang dimensi, operasi penghirisan menjadi lebih kompleks. Kita boleh mengekstrak sebahagian daripada tatasusunan dengan menyatakan julat baris dan lajur Berikut ialah beberapa operasi penghirisan tatasusunan berbilang dimensi yang biasa:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 提取第2行和第3行 sliced_arr = arr[1:3, :] # [[4 5 6] # [7 8 9]] # 提取第2列和第3列 sliced_arr = arr[:, 1:3] # [[2 3] # [5 6] # [8 9]] # 提取第2行到第3行,第2列到第3列 sliced_arr = arr[1:3, 1:3] # [[5 6] # [8 9]]
2. Operasi penghirisan saiz langkah
Dalam tatasusunan berbilang dimensi, kita juga boleh melakukan penghirisan. dengan menyatakan saiz langkah beroperasi. Berikut adalah beberapa operasi penghirisan saiz langkah biasa untuk tatasusunan berbilang dimensi:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # 每隔一行取一个元素 sliced_arr = arr[::2, :] # [[1 2 3] # [7 8 9]] # 每隔一列取一个元素 sliced_arr = arr[:, ::2] # [[1 3] # [4 6] # [7 9]]
3. Kemahiran aplikasi yang cekap operasi penghirisan
1. Gunakan penghirisan untuk penggantian elemen
Penghirisan bukan sahaja boleh digunakan untuk mengekstrak sebahagian daripada tatasusunan, tetapi juga untuk menggantikannya. Berikut ialah kod sampel:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 将数组中的奇数替换为0 arr[arr % 2 != 0] = 0 print(arr) # [0 2 0 4 0 6 0 8 0]
2. Gunakan penghirisan untuk penapisan bersyarat
Kita boleh menggunakan penghirisan untuk beroperasi pada elemen yang memenuhi syarat tertentu dan beroperasi pada elemen ini. Berikut ialah contoh kod:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) # 提取数组中大于5的元素 sliced_arr = arr[arr > 5] print(sliced_arr) # [6 7 8 9] # 对大于5的元素进行平方 arr[arr > 5] = arr[arr > 5] ** 2 print(arr) # [1 2 3 4 5 36 49 64 81]
Kesimpulan:
Artikel ini memperkenalkan teknik aplikasi yang cekap menggunakan kaedah operasi hirisan NumPy dan memberikan contoh kod khusus. Dengan penggunaan fleksibel operasi penghirisan, kami boleh melaksanakan operasi dengan cekap seperti pengekstrakan separa, transformasi dan penggantian tatasusunan. Saya harap artikel ini akan membantu anda memahami dan menggunakan operasi penghirisan NumPy.
Atas ialah kandungan terperinci Kemahiran aplikasi yang cekap untuk menguasai operasi penghirisan numpy dengan cepat. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Cara mengemas kini versi numpy: 1. Gunakan arahan "pip install --upgrade numpy" 2. Jika anda menggunakan versi Python 3.x, gunakan arahan "pip3 install --upgrade numpy", yang akan memuat turun dan pasangkannya, timpa Versi NumPy semasa 3. Jika anda menggunakan conda untuk mengurus persekitaran Python, gunakan perintah "conda install --update numpy" untuk mengemas kini.

Numpy ialah perpustakaan matematik penting dalam Python Ia menyediakan operasi tatasusunan yang cekap dan fungsi pengiraan saintifik dan digunakan secara meluas dalam analisis data, pembelajaran mesin, pembelajaran mendalam dan bidang lain. Apabila menggunakan numpy, kita selalunya perlu menyemak nombor versi numpy untuk menentukan fungsi yang disokong oleh persekitaran semasa. Artikel ini akan memperkenalkan cara menyemak versi numpy dengan cepat dan memberikan contoh kod khusus. Kaedah 1: Gunakan atribut __version__ yang disertakan dengan numpy Modul numpy disertakan dengan __.

Adalah disyorkan untuk menggunakan versi terkini NumPy1.21.2. Sebabnya ialah: Pada masa ini, versi stabil terkini NumPy ialah 1.21.2. Secara umumnya, adalah disyorkan untuk menggunakan versi terkini NumPy, kerana ia mengandungi ciri terkini dan pengoptimuman prestasi, dan membetulkan beberapa isu dan pepijat dalam versi sebelumnya.

Ajar anda langkah demi langkah untuk memasang NumPy dalam PyCharm dan menggunakan sepenuhnya fungsinya yang berkuasa: NumPy ialah salah satu perpustakaan asas untuk pengkomputeran saintifik dalam Python Ia menyediakan objek tatasusunan berbilang dimensi berprestasi tinggi dan pelbagai fungsi yang diperlukan untuk melaksanakan operasi asas pada fungsi tatasusunan. Ia merupakan bahagian penting dalam kebanyakan projek sains data dan pembelajaran mesin. Artikel ini akan memperkenalkan anda kepada cara memasang NumPy dalam PyCharm, dan menunjukkan ciri hebatnya melalui contoh kod tertentu. Langkah 1: Pasang PyCharm Pertama, kami

Cara menaik taraf versi numpy: Tutorial yang mudah diikuti, memerlukan contoh kod konkrit Pengenalan: NumPy ialah perpustakaan Python penting yang digunakan untuk pengkomputeran saintifik. Ia menyediakan objek tatasusunan berbilang dimensi yang berkuasa dan satu siri fungsi berkaitan yang boleh digunakan untuk melaksanakan operasi berangka yang cekap. Apabila versi baharu dikeluarkan, ciri yang lebih baharu dan pembetulan pepijat sentiasa tersedia kepada kami. Artikel ini akan menerangkan cara untuk menaik taraf pustaka NumPy anda yang dipasang untuk mendapatkan ciri terkini dan menyelesaikan isu yang diketahui. Langkah 1: Semak versi NumPy semasa pada permulaan

Cara menambah dimensi dalam numpy: 1. Gunakan "np.newaxis" untuk menambah dimensi "np.newaxis" ialah nilai indeks khas yang digunakan untuk memasukkan dimensi baharu pada kedudukan yang ditentukan. Anda boleh menggunakan np.newaxis pada kedudukan yang sepadan . Untuk meningkatkan dimensi; 2. Gunakan "np.expand_dims()" untuk meningkatkan dimensi Fungsi "np.expand_dims()" boleh memasukkan dimensi baharu pada kedudukan yang ditetapkan untuk meningkatkan dimensi tatasusunan.

Dengan perkembangan pesat bidang seperti sains data, pembelajaran mesin dan pembelajaran mendalam, Python telah menjadi bahasa arus perdana untuk analisis dan pemodelan data. Dalam Python, NumPy (singkatan untuk NumericalPython) ialah perpustakaan yang sangat penting kerana ia menyediakan satu set objek tatasusunan berbilang dimensi yang cekap dan merupakan asas untuk banyak perpustakaan lain seperti panda, SciPy dan scikit-learn. Dalam proses menggunakan NumPy, anda mungkin menghadapi masalah keserasian antara versi yang berbeza, kemudian

Numpy boleh dipasang menggunakan pip, conda, kod sumber dan Anaconda. Pengenalan terperinci: 1. pip, masukkan pip install numpy dalam baris arahan; 2. conda, masukkan conda install numpy dalam baris arahan 3. Kod sumber, buka zip pakej kod sumber atau masukkan direktori kod sumber, masukkan dalam arahan baris python setup.py bina python setup.py install.
