Kuasai teknik dan kaedah fungsi transpose dalam numpy
Petua dan kaedah untuk mempelajari fungsi numpy transpose
Python ialah bahasa pengaturcaraan yang sangat popular di mana kami boleh melakukan pelbagai analisis data, pengkomputeran saintifik dan tugasan pembelajaran mesin. Dalam tugasan ini, selalunya perlu untuk menukar tatasusunan.
Dalam Python, perpustakaan yang berkuasa, NumPy (Numerical Python), memberikan kami banyak fungsi dan alatan yang mudah untuk memproses tatasusunan. Antaranya, fungsi transpose adalah salah satu operasi yang biasa digunakan.
Artikel ini akan memperkenalkan teknik dan kaedah fungsi transpose dalam NumPy, dengan harapan dapat membantu pembaca memahami dan menggunakan fungsi ini dengan lebih baik.
1. Pengenalan kepada fungsi numpy.transpose
Fungsi transpose dalam NumPy boleh mengubah susunan. Ia boleh menerima tatasusunan sebagai hujah dan mengembalikan tatasusunan transposed.
Sebagai contoh, kita boleh menggunakan fungsi transpose untuk menukar baris dan lajur tatasusunan dua dimensi.
2. Penggunaan fungsi numpy.transpose
Berikut ialah penggunaan asas fungsi numpy.transpose:
numpy.transpose(arr, axes)
arr: Array yang perlu diubah.
paksi: Tetapkan tertib dimensi operasi transpos, lalai ialah Tiada.
Nilai pulangan bagi fungsi ini ialah tatasusunan terpindah.
Seterusnya, kami akan menunjukkan beberapa contoh khusus untuk membantu pembaca lebih memahami penggunaan fungsi numpy.transpose.
Sebagai contoh, kami mencipta tatasusunan dua dimensi arr:
import numpy sebagai np
arr = np.array([[1, 2, 3],
[4, 5, 6]])
Sekarang, kami memanggil fungsi transpose untuk melaksanakan operasi transpose:
arr_transpose = np.transpose(arr)
print(arr_transpose)
Hasilnya ialah:
[[1 4]
[2 5]
[3 6]]
tatasusunan dua dimensi asal Baris dan lajur ditukar ganti
3 Aplikasi lanjutan fungsi numpy.transpose
Selain penggunaan asas di atas, fungsi numpy.transpose juga mempunyai beberapa kegunaan lanjutan untuk memenuhi keperluan transposisi yang lebih kompleks
- Tetapkan tertib dimensi operasi transpose
Dalam contoh sebelumnya, kami menggunakan tertib dimensi lalai, tetapi sebenarnya, kami boleh menentukan tertib dimensi yang kami mahu dengan menetapkan parameter paksi
Sebagai contoh, kami mencipta Tiga arr tatasusunan dimensi:
arr = np.array([[[1, 2, 3],
[4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
Sekarang, kami melaksanakan operasi transpose dan tetapkan tertib dimensi kepada (2, 1, 0):
arr_transpose = np.transpose(arr, axes=(2, 1, 0))
print(arr_transpose)
Hasilnya ialah:
[[[[1 7]
[4 10]]
[[2 8]
[5 11]]
[[3 9]
[6 12]]]
Kita dapat lihat bahawa selepas transposing mengikut tertib dimensi (2, 1, 0), susunan dimensi tatasusunan disusun semula . [[1, 2, 3],
[4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
- Sekarang, kami melaksanakan operasi transpose melalui atribut T:
-
arr_transpose = arr.T
[4 10]]
[[2 8]
[5 11]][[3 9][6 12]]]
Begitu juga, kita dapat hasil transposed
Artikel ini memperkenalkan penggunaan asas dan aplikasi lanjutan bagi fungsi transposisi numpy.transpose dalam NumPy Melalui penggunaan fleksibel fungsi numpy.transpose, kami boleh menyelesaikan operasi transposisi tatasusunan dengan lebih mudah, membantu kami mengendalikan analisis data dan pengiraan saintifik. dan tugasan lain.
Atas ialah kandungan terperinci Kuasai teknik dan kaedah fungsi transpose dalam numpy. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Cara mengemas kini versi numpy: 1. Gunakan arahan "pip install --upgrade numpy" 2. Jika anda menggunakan versi Python 3.x, gunakan arahan "pip3 install --upgrade numpy", yang akan memuat turun dan pasangkannya, timpa Versi NumPy semasa 3. Jika anda menggunakan conda untuk mengurus persekitaran Python, gunakan perintah "conda install --update numpy" untuk mengemas kini.

Numpy ialah perpustakaan matematik penting dalam Python Ia menyediakan operasi tatasusunan yang cekap dan fungsi pengiraan saintifik dan digunakan secara meluas dalam analisis data, pembelajaran mesin, pembelajaran mendalam dan bidang lain. Apabila menggunakan numpy, kita selalunya perlu menyemak nombor versi numpy untuk menentukan fungsi yang disokong oleh persekitaran semasa. Artikel ini akan memperkenalkan cara menyemak versi numpy dengan cepat dan memberikan contoh kod khusus. Kaedah 1: Gunakan atribut __version__ yang disertakan dengan numpy Modul numpy disertakan dengan __.

Adalah disyorkan untuk menggunakan versi terkini NumPy1.21.2. Sebabnya ialah: Pada masa ini, versi stabil terkini NumPy ialah 1.21.2. Secara umumnya, adalah disyorkan untuk menggunakan versi terkini NumPy, kerana ia mengandungi ciri terkini dan pengoptimuman prestasi, dan membetulkan beberapa isu dan pepijat dalam versi sebelumnya.

Cara menaik taraf versi numpy: Tutorial yang mudah diikuti, memerlukan contoh kod konkrit Pengenalan: NumPy ialah perpustakaan Python penting yang digunakan untuk pengkomputeran saintifik. Ia menyediakan objek tatasusunan berbilang dimensi yang berkuasa dan satu siri fungsi berkaitan yang boleh digunakan untuk melaksanakan operasi berangka yang cekap. Apabila versi baharu dikeluarkan, ciri yang lebih baharu dan pembetulan pepijat sentiasa tersedia kepada kami. Artikel ini akan menerangkan cara untuk menaik taraf pustaka NumPy anda yang dipasang untuk mendapatkan ciri terkini dan menyelesaikan isu yang diketahui. Langkah 1: Semak versi NumPy semasa pada permulaan

Ajar anda langkah demi langkah untuk memasang NumPy dalam PyCharm dan menggunakan sepenuhnya fungsinya yang berkuasa: NumPy ialah salah satu perpustakaan asas untuk pengkomputeran saintifik dalam Python Ia menyediakan objek tatasusunan berbilang dimensi berprestasi tinggi dan pelbagai fungsi yang diperlukan untuk melaksanakan operasi asas pada fungsi tatasusunan. Ia merupakan bahagian penting dalam kebanyakan projek sains data dan pembelajaran mesin. Artikel ini akan memperkenalkan anda kepada cara memasang NumPy dalam PyCharm, dan menunjukkan ciri hebatnya melalui contoh kod tertentu. Langkah 1: Pasang PyCharm Pertama, kami

Cara menambah dimensi dalam numpy: 1. Gunakan "np.newaxis" untuk menambah dimensi "np.newaxis" ialah nilai indeks khas yang digunakan untuk memasukkan dimensi baharu pada kedudukan yang ditentukan. Anda boleh menggunakan np.newaxis pada kedudukan yang sepadan . Untuk meningkatkan dimensi; 2. Gunakan "np.expand_dims()" untuk meningkatkan dimensi Fungsi "np.expand_dims()" boleh memasukkan dimensi baharu pada kedudukan yang ditetapkan untuk meningkatkan dimensi tatasusunan.

Numpy boleh dipasang menggunakan pip, conda, kod sumber dan Anaconda. Pengenalan terperinci: 1. pip, masukkan pip install numpy dalam baris arahan; 2. conda, masukkan conda install numpy dalam baris arahan 3. Kod sumber, buka zip pakej kod sumber atau masukkan direktori kod sumber, masukkan dalam arahan baris python setup.py bina python setup.py install.

Dengan perkembangan pesat bidang seperti sains data, pembelajaran mesin dan pembelajaran mendalam, Python telah menjadi bahasa arus perdana untuk analisis dan pemodelan data. Dalam Python, NumPy (singkatan untuk NumericalPython) ialah perpustakaan yang sangat penting kerana ia menyediakan satu set objek tatasusunan berbilang dimensi yang cekap dan merupakan asas untuk banyak perpustakaan lain seperti panda, SciPy dan scikit-learn. Dalam proses menggunakan NumPy, anda mungkin menghadapi masalah keserasian antara versi yang berbeza, kemudian
