Jadual Kandungan
Jawapan betul
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk membuat lajur berdasarkan penapis baris DataFrame lain?

Bagaimana untuk membuat lajur berdasarkan penapis baris DataFrame lain?

Feb 09, 2024 pm 01:30 PM

如何基于其他 DataFrame 行过滤器创建列?

Kandungan soalan

Saya mempunyai kerangka malas yang dipanggil "data_jam" yang mengandungi lajur waktu tarikh setiap jam yang dipanggil "masa". Saya juga mempunyai bingkai data yang dipanggil "masa hadapan_masa" yang mengandungi dua lajur masa tarikh yang dipanggil "mula" (masa mula tempoh masa hadapan) dan "akhir" (masa tamat tempoh masa hadapan). Yang penting, tempoh masa hadapan ini tidak bertindih.

Saya ingin mencipta lajur yang dipanggil "tempoh" untuk lazyframe data_jam, ia harus mempunyai nilai int berdasarkan tempoh mana (baris rangka data masa hadapan_masa, dari 0 hingga 9 jika terdapat 10 titik) nilai lajur masa bagi data_jam Nilai adalah antara nilai lajur mula dan tamat tempoh_masa hadapan.

Saya cuba melakukan perkara berikut:

periods = pl.series(range(future_periods.height))
hourly_data = hourly_data.with_columns(
    (
        pl.when(((future_periods.get_column('start') <= pl.col('time')) & (pl.col('time') <= future_periods.get_column('end'))).any())
        .then(periods.filter(pl.series((future_periods.get_column('start') <= pl.col('real_time')) & (pl.col('real_time') <= future_periods.get_column('end')))).to_list()[0])
        .otherwise(none)
    ).alias('period')
)
Salin selepas log masuk

Tetapi ini memberi saya ralat: typeerror: Memanggil pembina siri dengan jenis 'expr' yang tidak disokong untuk values hujah

Apa yang saya ingin capai: Input:

hourly_data:
┌────────────────────┐
│ time               │
│ ---                │
│ datetime           │
╞════════════════════╡
│ 2024-01-01 00:00:00│
│ 2024-01-01 01:00:00│
│ 2024-01-01 02:00:00│
│         ...        │
│ 2024-03-31 23:00:00│
│ 2024-04-01 00:00:00│
│ 2024-04-01 01:00:00│
│         ...        │
│ 2024-06-01 00:00:00│
└────────────────────┘
future_periods:
┌─────────────────────────┬───────────────────────┐
│ start                   ┆ end                   │
│ ---                     ┆ ---                   │
│ datetime                ┆ datetime              │
╞═════════════════════════╪═══════════════════════╡
│ 2024-01-01 00:00:00     ┆ 2024-01-31 23:00:00   │
│ 2024-02-01 00:00:00     ┆ 2024-02-28 23:00:00   │
│ 2024-03-01 00:00:00     ┆ 2024-03-31 23:00:00   │
│ 2024-04-01 00:00:00     ┆ 2024-05-31 23:00:00   │
└─────────────────────────┴───────────────────────┘
Salin selepas log masuk

Keluaran:

hourly_data:
┌─────────────────────────┬────────┐
│ time                    ┆ period │
│ ---                     ┆ ---    │
│ datetime                ┆ int    │
╞═════════════════════════╪════════╡
│ 2024-01-01 00:00:00     ┆ 0      │
│ 2024-01-01 01:00:00     ┆ 0      │
│ 2024-01-01 02:00:00     ┆ 0      │
│          ...            ┆ ...    │
│ 2024-03-31 23:00:00     ┆ 2      │
│ 2024-04-01 00:00:00     ┆ 3      │
│ 2024-04-01 01:00:00     ┆ 3      │
│          ...            ┆ ...    │
│ 2024-06-01 00:00:00     ┆ None   │
└─────────────────────────┴────────┘
Salin selepas log masuk


Jawapan betul


Secara amnya, ia adalah gabungan ketidaksamaan, atau dalam kes anda, gabungan julat. Berikut ialah satu cara untuk melakukannya. Mari mulakan dengan mencipta beberapa sampel data:

hourly_data = pl.dataframe({
    "time": ['2023-01-01 14:00','2023-01-02 09:00', '2023-01-04 11:00']
}).lazy()

future_periods = pl.dataframe({
    "id": [1,2,3,4],
    "start": ['2023-01-01 11:00','2023-01-02 10:00', '2023-01-03 15:00', '2023-01-04 10:00'],
    "end": ['2023-01-01 16:00','2023-01-02 11:00', '2023-01-03 18:00', '2023-01-04 15:00']
}).lazy()

┌──────────────────┬──────┐
│ time             ┆ data │
│ ---              ┆ ---  │
│ str              ┆ str  │
╞══════════════════╪══════╡
│ 2023-01-01 14:00 ┆ a    │
│ 2023-01-02 09:00 ┆ b    │
│ 2023-01-04 11:00 ┆ c    │
└──────────────────┴──────┘ 
┌─────┬──────────────────┬──────────────────┐
│ id  ┆ start            ┆ end              │
│ --- ┆ ---              ┆ ---              │
│ i64 ┆ str              ┆ str              │
╞═════╪══════════════════╪══════════════════╡
│ 1   ┆ 2023-01-01 11:00 ┆ 2023-01-01 16:00 │
│ 2   ┆ 2023-01-02 10:00 ┆ 2023-01-02 11:00 │
│ 3   ┆ 2023-01-03 15:00 ┆ 2023-01-03 18:00 │
│ 4   ┆ 2023-01-04 10:00 ┆ 2023-01-04 15:00 │
└─────┴──────────────────┴──────────────────┘
Salin selepas log masuk

Kini anda boleh melakukannya dalam dua langkah - pertama, kira pautan antara time 和未来时段 id:

time_periods = (
   hourly_data
       .join(future_periods, how="cross")
       .filter(
           pl.col("time") > pl.col("start"),
           pl.col("time") < pl.col("end")
        ).select(["time","id"])
)

┌──────────────────┬─────┐
│ time             ┆ id  │
│ ---              ┆ --- │
│ str              ┆ i64 │
╞══════════════════╪═════╡
│ 2023-01-01 14:00 ┆ 1   │
│ 2023-01-04 11:00 ┆ 4   │
└──────────────────┴─────┘
Salin selepas log masuk

Anda kemudian boleh menyertainya dengan bingkai data asal:

hourly_data.join(time_periods, how="left", on="time").collect()

┌──────────────────┬──────┬──────┐
│ time             ┆ data ┆ id   │
│ ---              ┆ ---  ┆ ---  │
│ str              ┆ str  ┆ i64  │
╞══════════════════╪══════╪══════╡
│ 2023-01-01 14:00 ┆ a    ┆ 1    │
│ 2023-01-02 09:00 ┆ b    ┆ null │
│ 2023-01-04 11:00 ┆ c    ┆ 4    │
└──────────────────┴──────┴──────┘
Salin selepas log masuk

Cara lain untuk melakukan ini mungkin menggunakan penyepaduan duckdb 感谢 与 polars:

import duckdb
import polars as pl

duckdb.sql("""
    select
        h.time, h.data, p.id
    from hourly_data as h
        left join future_periods as p on
            p.start < h.time and
            p.end > h.time
""").pl()

┌──────────────────┬──────┬──────┐
│ time             ┆ data ┆ id   │
│ ---              ┆ ---  ┆ ---  │
│ str              ┆ str  ┆ i64  │
╞══════════════════╪══════╪══════╡
│ 2023-01-01 14:00 ┆ A    ┆ 1    │
│ 2023-01-04 11:00 ┆ C    ┆ 4    │
│ 2023-01-02 09:00 ┆ B    ┆ null │
└──────────────────┴──────┴──────┘
Salin selepas log masuk

Atas ialah kandungan terperinci Bagaimana untuk membuat lajur berdasarkan penapis baris DataFrame lain?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Bagaimana untuk menyelesaikan masalah kebenaran yang dihadapi semasa melihat versi Python di Terminal Linux? Apr 01, 2025 pm 05:09 PM

Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam Kaedah Projek dan Masalah Dikemukakan Dalam masa 10 Jam? Apr 02, 2025 am 07:18 AM

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Bagaimana untuk mengelakkan dikesan oleh penyemak imbas apabila menggunakan fiddler di mana-mana untuk membaca lelaki-dalam-tengah? Apr 02, 2025 am 07:15 AM

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Bagaimana cara menyalin seluruh lajur satu data ke dalam data data lain dengan struktur yang berbeza di Python? Apr 01, 2025 pm 11:15 PM

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Bagaimanakah uvicorn terus mendengar permintaan http tanpa serving_forever ()? Apr 01, 2025 pm 10:51 PM

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Bagaimana secara dinamik membuat objek melalui rentetan dan panggil kaedahnya dalam Python? Bagaimana secara dinamik membuat objek melalui rentetan dan panggil kaedahnya dalam Python? Apr 01, 2025 pm 11:18 PM

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...

See all articles