Jadual Kandungan
预训练YOLOv8的结果
小结
译者介绍
Rumah Peranti teknologi AI Cara meneroka dan menggambarkan data ML untuk pengesanan objek dalam imej

Cara meneroka dan menggambarkan data ML untuk pengesanan objek dalam imej

Feb 16, 2024 am 11:33 AM
pembelajaran mesin Model terlatih ml-data

Dalam beberapa tahun kebelakangan ini, orang ramai telah mendapat pemahaman yang lebih mendalam tentang kepentingan pemahaman mendalam tentang data pembelajaran mesin (ML-data). Walau bagaimanapun, memandangkan pengesanan set data yang besar biasanya memerlukan banyak pelaburan manusia dan material, aplikasinya yang meluas dalam bidang penglihatan komputer masih memerlukan pembangunan lanjut.

Biasanya, dalam pengesanan objek (subset penglihatan komputer), objek dalam imej diposisikan dengan menentukan kotak sempadan Bukan sahaja objek boleh dikenal pasti, tetapi konteks, saiz dan konteks objek juga boleh difahami. Hubungan dengan elemen lain dalam adegan. Pada masa yang sama, pemahaman yang menyeluruh tentang pengedaran kelas, kepelbagaian saiz objek dan persekitaran biasa di mana kelas muncul juga akan membantu menemui corak ralat dalam model latihan semasa penilaian dan penyahpepijatan, supaya data latihan tambahan boleh dipilih lebih disasarkan.

Dalam amalan, saya cenderung untuk mengambil pendekatan berikut:

  • Gunakan model terlatih atau peningkatan pada model asas untuk menambah struktur pada data. Contohnya: mencipta pelbagai benam imej dan menggunakan teknik pengurangan dimensi seperti t-SNE atau UMAP. Ini boleh menjana peta persamaan untuk memudahkan penyemakan imbas data. Di samping itu, menggunakan model pra-latihan untuk pengesanan juga boleh memudahkan pengekstrakan konteks.
  • Gunakan alat visualisasi yang boleh menyepadukan struktur sedemikian dengan statistik dan fungsi semakan data mentah.

Di bawah, saya akan memperkenalkan cara menggunakan Renomics Spotlight untuk mencipta visualisasi pengesanan objek interaktif. Sebagai contoh, saya akan cuba:

  • Membina visualisasi untuk pengesan orang dalam imej.
  • Visualisasi termasuk peta persamaan, penapis dan statistik untuk penerokaan data anda dengan mudah.
  • Lihat setiap imej secara terperinci dengan pengesanan Ground Truth dan Ultralytics YOLOv8.

如何探索和可视化用于图像中物体检测的 ML 数据

Visualisasi matlamat pada Tumpuan Renomics. Sumber: Dicipta oleh pengarang

Muat turun imej orang dalam dataset COCO

Mula-mula, pasang pakej yang diperlukan melalui arahan:

!pip install fiftyone ultralytics renumics-spotlight
Salin selepas log masuk
Mengambil kesempatan daripada ciri muat turun yang boleh disambung semula

Fifty boleh Muat turun pelbagai imej daripada dataset COCO. Dengan tetapan parameter mudah, kami boleh memuat turun 1,000 imej yang mengandungi satu atau lebih orang. Kod khusus adalah seperti berikut:

importpandasaspdimportnumpyasnpimportfiftyone.zooasfoz# 从 COCO 数据集中下载 1000 张带人的图像dataset = foz.load_zoo_dataset( "coco-2017"、split="validation"、label_types=[ "detections"、],classes=["person"]、 max_samples=1000、dataset_name="coco-2017-person-1k-validations"、)
Salin selepas log masuk
Kemudian, anda boleh menggunakan kod berikut:

def xywh_too_xyxyn(bbox): "" convert from xywh to xyxyn format """ return[bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]].行 = []fori, samplein enumerate(dataset):labels = [detection.labelfordetectioninsample.ground_truth.detections] bboxs = [...bboxs = [xywh_too_xyxyn(detection.bounding_box) fordetectioninsample.ground_truth.detections]bboxs_persons = [bboxforbbox, labelin zip(bboxs, labels)iflabel =="person"] 行。row.append([sample.filepath, labels, bboxs, bboxs_persons])df = pd.DataFrame(row, columns=["filepath","categories", "bboxs", "bboxs_persons"])df["major_category"] = df["categories"].apply( lambdax:max(set(x) -set(["person"]), key=x.count) if len(set(x)) >1 else "only person"。)
Salin selepas log masuk
untuk menyediakan data sebagai Pandas DataFrame, lajur termasuk: laluan fail, kategori kotak sempadan, kotak, orang yang terkandung dalam kotak sempadan dan kategori utama (walaupun terdapat orang) untuk menentukan konteks orang dalam imej:

如何探索和可视化用于图像中物体检测的 ML 数据

Anda kemudian boleh memvisualisasikannya melalui Spotlight:

From renumics import spotlightspotlight.show(df)
Salin selepas log masuk
Anda Anda boleh menggunakan butang tambah paparan dalam paparan inspektor dan pilih bboxs_persons dan laluan fail dalam paparan sempadan untuk memaparkan sempadan yang sepadan dengan imej:

如何探索和可视化用于图像中物体检测的 ML 数据

Membenamkan data kaya

kepada data, kita boleh menerima pakai pembenaman imej pelbagai model asas (iaitu perwakilan vektor padat). Untuk melakukan ini, anda boleh menggunakan teknik pengurangan dimensi selanjutnya seperti UMAP atau t-SNE untuk menggunakan pembenaman Pengubah Penglihatan (ViT) keseluruhan imej pada penstrukturan set data, sekali gus menyediakan peta persamaan 2D bagi imej. Selain itu, anda boleh menggunakan output pengesan objek terlatih untuk menstruktur data anda dengan mengelaskannya mengikut saiz atau bilangan objek yang terkandung di dalamnya. Memandangkan set data COCO sudah menyediakan maklumat ini, kami boleh menggunakannya secara langsung.

Memandangkan Spotl

ight menyepadukan sokongan untuk model google/vit-base-patch16-224-in21k(ViT) dan UMAP , apabila anda mencipta pelbagai benaman menggunakan laluan fail, ia akan digunakan secara automatik:

spotlight.show(df, embed=["filepath"])
Salin selepas log masuk

通过上述代码,Spotlight 将各种嵌入进行计算,并应用 UMAP 在相似性地图中显示结果。其中,不同的颜色代表了主要的类别。据此,您可以使用相似性地图来浏览数据:

如何探索和可视化用于图像中物体检测的 ML 数据

预训练YOLOv8的结果

可用于快速识别物体的Ultralytics YOLOv8,是一套先进的物体检测模型。它专为快速图像处理而设计,适用于各种实时检测任务,特别是在被应用于大量数据时,用户无需浪费太多的等待时间。

为此,您可以首先加载预训练模型:

From ultralytics import YOLOdetection_model = YOLO("yolov8n.pt")
Salin selepas log masuk

并执行各种检测:

detections = []forfilepathindf["filepath"].tolist():detection = detection_model(filepath)[0]detections.append({ "yolo_bboxs":[np.array(box.xyxyn.tolist())[0]forboxindetection.boxes]、 "yolo_conf_persons": np.mean([np.array(box.conf.tolist())[0]. forboxindetection.boxes ifdetection.names[int(box.cls)] =="person"]), np.mean(]), "yolo_bboxs_persons":[np.array(box.xyxyn.tolist())[0] forboxindetection.boxes ifdetection.names[int(box.cls)] =="person],"yolo_categories": np.array([np.array(detection.names[int(box.cls)])forboxindetection.boxes], "yolo_categories": np.array(),})df_yolo = pd.DataFrame(detections)
Salin selepas log masuk

在12gb的GeForce RTX 4070 Ti上,上述过程在不到20秒的时间内便可完成。接着,您可以将结果包含在DataFrame中,并使用Spotlight将其可视化。请参考如下代码:

df_merged = pd.concat([df, df_yolo], axis=1)spotlight.show(df_merged, embed=["filepath"])
Salin selepas log masuk

下一步,Spotlight将再次计算各种嵌入,并应用UMAP到相似度图中显示结果。不过这一次,您可以为检测到的对象选择模型的置信度,并使用相似度图在置信度较低的集群中导航检索。毕竟,鉴于这些图像的模型是不确定的,因此它们通常有一定的相似度。

如何探索和可视化用于图像中物体检测的 ML 数据

当然,上述简短的分析也表明了,此类模型在如下场景中会遇到系统性的问题:

  • 由于列车体积庞大,站在车厢外的人显得非常渺小
  • 对于巴士和其他大型车辆而言,车内的人员几乎看不到
  • 有人站在飞机的外面
  • 食物的特写图片上有人的手或手指

您可以判断这些问题是否真的会影响您的人员检测目标,如果是的话,则应考虑使用额外的训练数据,来增强数据集,以优化模型在这些特定场景中的性能。

小结

综上所述,预训练模型和 Spotlight 等工具的使用,可以让我们的对象检测可视化过程变得更加容易,进而增强数据科学的工作流程。您可以使用自己的数据去尝试和体验上述代码。

译者介绍

陈峻(Julian Chen),51CTO社区编辑,具有十多年的IT项目实施经验,善于对内外部资源与风险实施管控,专注传播网络与信息安全知识与经验。

原文标题:How to Explore and Visualize ML-Data for Object Detection in Images,作者:Markus Stoll

链接:https://itnext.io/how-to-explore-and-visualize-ml-data-for-object-detection-in-images-88e074f46361。

Atas ialah kandungan terperinci Cara meneroka dan menggambarkan data ML untuk pengesanan objek dalam imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Artikel Panas

R.E.P.O. Kristal tenaga dijelaskan dan apa yang mereka lakukan (kristal kuning)
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Tetapan grafik terbaik
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Cara Memperbaiki Audio Jika anda tidak dapat mendengar sesiapa
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Cara Membuka Segala -galanya Di Myrise
1 bulan yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

15 alat anotasi imej percuma sumber terbuka disyorkan 15 alat anotasi imej percuma sumber terbuka disyorkan Mar 28, 2024 pm 01:21 PM

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Artikel ini akan membawa anda memahami SHAP: penjelasan model untuk pembelajaran mesin Jun 01, 2024 am 10:58 AM

Dalam bidang pembelajaran mesin dan sains data, kebolehtafsiran model sentiasa menjadi tumpuan penyelidik dan pengamal. Dengan aplikasi meluas model yang kompleks seperti kaedah pembelajaran mendalam dan ensemble, memahami proses membuat keputusan model menjadi sangat penting. AI|XAI yang boleh dijelaskan membantu membina kepercayaan dan keyakinan dalam model pembelajaran mesin dengan meningkatkan ketelusan model. Meningkatkan ketelusan model boleh dicapai melalui kaedah seperti penggunaan meluas pelbagai model yang kompleks, serta proses membuat keputusan yang digunakan untuk menerangkan model. Kaedah ini termasuk analisis kepentingan ciri, anggaran selang ramalan model, algoritma kebolehtafsiran tempatan, dsb. Analisis kepentingan ciri boleh menerangkan proses membuat keputusan model dengan menilai tahap pengaruh model ke atas ciri input. Anggaran selang ramalan model

Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Telus! Analisis mendalam tentang prinsip model pembelajaran mesin utama! Apr 12, 2024 pm 05:55 PM

Dalam istilah orang awam, model pembelajaran mesin ialah fungsi matematik yang memetakan data input kepada output yang diramalkan. Secara lebih khusus, model pembelajaran mesin ialah fungsi matematik yang melaraskan parameter model dengan belajar daripada data latihan untuk meminimumkan ralat antara output yang diramalkan dan label sebenar. Terdapat banyak model dalam pembelajaran mesin, seperti model regresi logistik, model pepohon keputusan, model mesin vektor sokongan, dll. Setiap model mempunyai jenis data dan jenis masalah yang berkenaan. Pada masa yang sama, terdapat banyak persamaan antara model yang berbeza, atau terdapat laluan tersembunyi untuk evolusi model. Mengambil perceptron penyambung sebagai contoh, dengan meningkatkan bilangan lapisan tersembunyi perceptron, kita boleh mengubahnya menjadi rangkaian neural yang mendalam. Jika fungsi kernel ditambah pada perceptron, ia boleh ditukar menjadi SVM. yang ini

Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Kenal pasti overfitting dan underfitting melalui lengkung pembelajaran Apr 29, 2024 pm 06:50 PM

Artikel ini akan memperkenalkan cara mengenal pasti pemasangan lampau dan kekurangan dalam model pembelajaran mesin secara berkesan melalui keluk pembelajaran. Underfitting dan overfitting 1. Overfitting Jika model terlampau latihan pada data sehingga ia mempelajari bunyi daripadanya, maka model tersebut dikatakan overfitting. Model yang dipasang terlebih dahulu mempelajari setiap contoh dengan sempurna sehingga ia akan salah mengklasifikasikan contoh yang tidak kelihatan/baharu. Untuk model terlampau, kami akan mendapat skor set latihan yang sempurna/hampir sempurna dan set pengesahan/skor ujian yang teruk. Diubah suai sedikit: "Punca overfitting: Gunakan model yang kompleks untuk menyelesaikan masalah mudah dan mengekstrak bunyi daripada data. Kerana set data kecil sebagai set latihan mungkin tidak mewakili perwakilan yang betul bagi semua data. 2. Underfitting Heru

Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Evolusi kecerdasan buatan dalam penerokaan angkasa lepas dan kejuruteraan penempatan manusia Apr 29, 2024 pm 03:25 PM

Pada tahun 1950-an, kecerdasan buatan (AI) dilahirkan. Ketika itulah penyelidik mendapati bahawa mesin boleh melakukan tugas seperti manusia, seperti berfikir. Kemudian, pada tahun 1960-an, Jabatan Pertahanan A.S. membiayai kecerdasan buatan dan menubuhkan makmal untuk pembangunan selanjutnya. Penyelidik sedang mencari aplikasi untuk kecerdasan buatan dalam banyak bidang, seperti penerokaan angkasa lepas dan kelangsungan hidup dalam persekitaran yang melampau. Penerokaan angkasa lepas ialah kajian tentang alam semesta, yang meliputi seluruh alam semesta di luar bumi. Angkasa lepas diklasifikasikan sebagai persekitaran yang melampau kerana keadaannya berbeza daripada di Bumi. Untuk terus hidup di angkasa, banyak faktor mesti dipertimbangkan dan langkah berjaga-jaga mesti diambil. Para saintis dan penyelidik percaya bahawa meneroka ruang dan memahami keadaan semasa segala-galanya boleh membantu memahami cara alam semesta berfungsi dan bersedia untuk menghadapi kemungkinan krisis alam sekitar

Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Melaksanakan Algoritma Pembelajaran Mesin dalam C++: Cabaran dan Penyelesaian Biasa Jun 03, 2024 pm 01:25 PM

Cabaran biasa yang dihadapi oleh algoritma pembelajaran mesin dalam C++ termasuk pengurusan memori, multi-threading, pengoptimuman prestasi dan kebolehselenggaraan. Penyelesaian termasuk menggunakan penunjuk pintar, perpustakaan benang moden, arahan SIMD dan perpustakaan pihak ketiga, serta mengikuti garis panduan gaya pengekodan dan menggunakan alat automasi. Kes praktikal menunjukkan cara menggunakan perpustakaan Eigen untuk melaksanakan algoritma regresi linear, mengurus memori dengan berkesan dan menggunakan operasi matriks berprestasi tinggi.

AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks AI yang boleh dijelaskan: Menerangkan model AI/ML yang kompleks Jun 03, 2024 pm 10:08 PM

Penterjemah |. Disemak oleh Li Rui |. Chonglou Model kecerdasan buatan (AI) dan pembelajaran mesin (ML) semakin kompleks hari ini, dan output yang dihasilkan oleh model ini adalah kotak hitam – tidak dapat dijelaskan kepada pihak berkepentingan. AI Boleh Dijelaskan (XAI) bertujuan untuk menyelesaikan masalah ini dengan membolehkan pihak berkepentingan memahami cara model ini berfungsi, memastikan mereka memahami cara model ini sebenarnya membuat keputusan, dan memastikan ketelusan dalam sistem AI, Amanah dan akauntabiliti untuk menyelesaikan masalah ini. Artikel ini meneroka pelbagai teknik kecerdasan buatan (XAI) yang boleh dijelaskan untuk menggambarkan prinsip asasnya. Beberapa sebab mengapa AI boleh dijelaskan adalah penting Kepercayaan dan ketelusan: Untuk sistem AI diterima secara meluas dan dipercayai, pengguna perlu memahami cara keputusan dibuat

Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud Adakah Flash Attention stabil? Meta dan Harvard mendapati bahawa sisihan berat model mereka berubah-ubah mengikut urutan magnitud May 30, 2024 pm 01:24 PM

MetaFAIR bekerjasama dengan Harvard untuk menyediakan rangka kerja penyelidikan baharu untuk mengoptimumkan bias data yang dijana apabila pembelajaran mesin berskala besar dilakukan. Adalah diketahui bahawa latihan model bahasa besar sering mengambil masa berbulan-bulan dan menggunakan ratusan atau bahkan ribuan GPU. Mengambil model LLaMA270B sebagai contoh, latihannya memerlukan sejumlah 1,720,320 jam GPU. Melatih model besar memberikan cabaran sistemik yang unik disebabkan oleh skala dan kerumitan beban kerja ini. Baru-baru ini, banyak institusi telah melaporkan ketidakstabilan dalam proses latihan apabila melatih model AI generatif SOTA Mereka biasanya muncul dalam bentuk lonjakan kerugian Contohnya, model PaLM Google mengalami sehingga 20 lonjakan kerugian semasa proses latihan. Bias berangka adalah punca ketidaktepatan latihan ini,

See all articles