Pengenalan
Sains data telah muncul dari hari ke hari dan telah digunakan secara meluas dalam pelbagai industri. pandas ialah sumber terbukaperpustakaan untuk manipulasi dan pemodelan data, menjadikannya alat yang berharga untuk saintis data. Dalam artikel ini, kami akan meneroka cara menggunakan Panda untuk penerokaan dan pemodelan data.
Penerokaan Data
Penerokaan data ialah langkah pertama yang penting dalam proses sains data, yang membolehkan kami memahami data secara intuitif. Menggunakan Panda, kami boleh memuatkan data dan melihat kandungannya.
import numpy as np import numpy as np import matplotlib.pyplot as plts data = pd.read_csv("data.csv")
Output jadual menyediakan perspektif tentang data, manakala carta membantu kami memvisualisasikandata untuk mencari arah aliran dan pencilan.
data.head() data.hist() plt.show()
Praprosesan data
Sebelum memodelkan data, prapemprosesan data biasanya diperlukan untuk memastikan integriti dan konsistensi data. Ini mungkin melibatkan pembersihan nilai yang hilang, menyeragamkan ciri atau menukar data kategori kepada bentuk berangka yang boleh dilatih pada model.
data.dropna(inplace=True) data = (data - data.min()) / (data.max() - data.min()) data["cateGory"] = data["category].astype("category")
Pemodelan Data
Setelah data siap, kita boleh mula membuat model. Pandas mempunyai sokongan terbina dalam untuk pelbagai perpustakaan untuk pemodelan statistik biasa, seperti regresi linear, regresi logistik dan pepohon keputusan.
from sklearn.linear_model import LoGISticRegression model = LogisticRegression() model.fit(data[["feature1", "feature2"]], data["target"])
Penilaian model
Selepas melatih model, langkah seterusnya ialah menilai prestasinya. Kita boleh menggunakan metrik penilaian seperti matriks kekeliruan, ketepatan, ingat semula, skor F1, dsb.
import sklearn.matrics as metics predictions = model.predict(x_test) print(metices.confusion_matrix(y_test, predictions)) print(metices.accuracy_score(y_test, predictions))
Ringkasan
Menggunakan Panda untuk penerokaan dan pemodelan data adalah asas kepada proses sains data. Sintaks intuitif Pandas dan sokongan terbina dalam untuk perpustakaan pemodelan statistik menjadikannya sesuai untuk melakukan sains data dengan cepat dan cekap. Sambil kami terus maju dalam bidang sains data, kekal mahir dalam Panda akan memberi manfaat besar kepada kami semasa kami menavigasi landskap cerapan terdorong data yang sentiasa berubah dan mendorong pembuatan keputusan.
Atas ialah kandungan terperinci Analisis Data Python: Penerokaan dan Ramalan Data. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!