


Tutorial Pembelajaran Mesin Python untuk Pemula: Bina Model Pembelajaran Mesin Pertama Anda Langkah demi Langkah
Pembelajaran mesin sedang mengubah cara kita berinteraksi dengan dunia pada kadar yang luar biasa. Daripada kereta pandu sendiri kepada diagnostik perubatan, mesin Pembelajaran kini terdapat di mana-mana dalam pelbagai bidang. Jika anda ingin memulakan perjalanan pembelajaran mesin anda sendiri, maka pythonPembelajaran MesinTutorial ini sesuai untuk anda. Kami akan membantu anda membina aplikasi pembelajaran mesin pertama anda langkah demi langkah, bermula dengan konsep asas.
1. Fahami konsep asas pembelajaran mesin
Pembelajaran mesin pada asasnya adalah satu disiplin yang membolehkan sistem komputer belajar belajar secara automatik daripada data dan mengekstrak pengetahuan daripadanya. Ia membolehkan sistem meningkatkan prestasinya tanpa diprogramkan. Algoritma pembelajaran mesin biasa termasuk pembelajaran diselia, pembelajaran tanpa penyeliaan dan algoritma pembelajaran pengukuhan.
2. Pilih perpustakaan pembelajaran mesin yang sesuai
DalamPython, terdapat banyak perpustakaan pembelajaran mesin yang berbeza untuk dipilih. Yang paling popular termasuk Scikit-Learn, Keras dan Tensorflow. Setiap perpustakaan ini mempunyai kebaikan dan keburukan tersendiri, jadi anda perlu mempertimbangkan keperluan khusus anda apabila memilih perpustakaan.
3. Sediakan data anda
Algoritma pembelajaran mesin memerlukan data untuk dipelajari. Anda boleh mendapatkan data daripada pelbagai sumber, termasuk set data awam,web dan pangkalan data anda sendiri. Sebelum menggunakan data untuk latihan, anda perlu memprosesnya terlebih dahulu untuk memudahkan proses algoritma.
4 Pilih algoritma pembelajaran mesin yang sesuai
Berdasarkan data dan tugas anda, anda perlu memilih algoritma pembelajaran mesin yang sesuai. Terdapat banyak algoritma yang berbeza untuk dipilih, termasuk regresi linear, regresi logistik, pepohon keputusan dan mesin vektor sokongan.
5. Latih model pembelajaran mesin anda
Sebaik sahaja anda memilih algoritma, anda perlu melatihnya menggunakan data latihan. Proses latihan melibatkan memasukkan data ke dalam algoritma dan membenarkan algoritma belajar daripada data. Selepas latihan selesai, anda akan mempunyai model terlatih yang boleh mengklasifikasikan atau mengundur data baharu.
6 Nilai model pembelajaran mesin anda
Sebelum menggunakan model pembelajaran mesin anda pada data sebenar, anda perlu menilainya. Cara biasa untuk menilai model termasuk ketepatan, ingatan semula dan skor F1.
7. Gunakan model pembelajaran mesin anda
Setelah anda berpuas hati dengan model pembelajaran mesin anda, anda boleh menggunakan model tersebut ke dalam pengeluaran. Cara biasa untuk menggunakan model termasuk platform awan dan peranti tepi.
8 Optimumkan model pembelajaran mesin anda
Lama kelamaan, model pembelajaran mesin anda mungkin menjadi lapuk. Untuk mengekalkan ketepatan model anda, anda perlumengoptimumkannya secara tetap. Cara biasa untuk mengoptimumkan model termasuk melatih semula model, melaraskan hiperparameter dan menggunakan algoritma yang berbeza.
Atas ialah kandungan terperinci Tutorial Pembelajaran Mesin Python untuk Pemula: Bina Model Pembelajaran Mesin Pertama Anda Langkah demi Langkah. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



PHP dan Python mempunyai kelebihan dan kekurangan mereka sendiri, dan pilihannya bergantung kepada keperluan projek dan keutamaan peribadi. 1.PHP sesuai untuk pembangunan pesat dan penyelenggaraan aplikasi web berskala besar. 2. Python menguasai bidang sains data dan pembelajaran mesin.

Membolehkan pecutan GPU pytorch pada sistem CentOS memerlukan pemasangan cuda, cudnn dan GPU versi pytorch. Langkah-langkah berikut akan membimbing anda melalui proses: Pemasangan CUDA dan CUDNN Tentukan keserasian versi CUDA: Gunakan perintah NVIDIA-SMI untuk melihat versi CUDA yang disokong oleh kad grafik NVIDIA anda. Sebagai contoh, kad grafik MX450 anda boleh menyokong CUDA11.1 atau lebih tinggi. Muat turun dan pasang Cudatoolkit: Lawati laman web rasmi Nvidiacudatoolkit dan muat turun dan pasang versi yang sepadan mengikut versi CUDA tertinggi yang disokong oleh kad grafik anda. Pasang Perpustakaan Cudnn:

Python dan JavaScript mempunyai kelebihan dan kekurangan mereka sendiri dari segi komuniti, perpustakaan dan sumber. 1) Komuniti Python mesra dan sesuai untuk pemula, tetapi sumber pembangunan depan tidak kaya dengan JavaScript. 2) Python berkuasa dalam bidang sains data dan perpustakaan pembelajaran mesin, sementara JavaScript lebih baik dalam perpustakaan pembangunan dan kerangka pembangunan depan. 3) Kedua -duanya mempunyai sumber pembelajaran yang kaya, tetapi Python sesuai untuk memulakan dengan dokumen rasmi, sementara JavaScript lebih baik dengan MDNWebDocs. Pilihan harus berdasarkan keperluan projek dan kepentingan peribadi.

Docker menggunakan ciri -ciri kernel Linux untuk menyediakan persekitaran berjalan yang cekap dan terpencil. Prinsip kerjanya adalah seperti berikut: 1. Cermin digunakan sebagai templat baca sahaja, yang mengandungi semua yang anda perlukan untuk menjalankan aplikasi; 2. Sistem Fail Kesatuan (Unionfs) menyusun pelbagai sistem fail, hanya menyimpan perbezaan, menjimatkan ruang dan mempercepatkan; 3. Daemon menguruskan cermin dan bekas, dan pelanggan menggunakannya untuk interaksi; 4. Ruang nama dan cgroups melaksanakan pengasingan kontena dan batasan sumber; 5. Pelbagai mod rangkaian menyokong interkoneksi kontena. Hanya dengan memahami konsep -konsep teras ini, anda boleh menggunakan Docker dengan lebih baik.

Penyimpanan Objek Minio: Penyebaran berprestasi tinggi di bawah CentOS System Minio adalah prestasi tinggi, sistem penyimpanan objek yang diedarkan yang dibangunkan berdasarkan bahasa Go, serasi dengan Amazons3. Ia menyokong pelbagai bahasa pelanggan, termasuk Java, Python, JavaScript, dan GO. Artikel ini akan memperkenalkan pemasangan dan keserasian minio pada sistem CentOS. Keserasian versi CentOS Minio telah disahkan pada pelbagai versi CentOS, termasuk tetapi tidak terhad kepada: CentOS7.9: Menyediakan panduan pemasangan lengkap yang meliputi konfigurasi kluster, penyediaan persekitaran, tetapan fail konfigurasi, pembahagian cakera, dan mini

Latihan yang diedarkan Pytorch pada sistem CentOS memerlukan langkah -langkah berikut: Pemasangan Pytorch: Premisnya ialah Python dan PIP dipasang dalam sistem CentOS. Bergantung pada versi CUDA anda, dapatkan arahan pemasangan yang sesuai dari laman web rasmi Pytorch. Untuk latihan CPU sahaja, anda boleh menggunakan arahan berikut: PipinstallToRchTorchVisionTorchaudio Jika anda memerlukan sokongan GPU, pastikan versi CUDA dan CUDNN yang sama dipasang dan gunakan versi pytorch yang sepadan untuk pemasangan. Konfigurasi Alam Sekitar Teragih: Latihan yang diedarkan biasanya memerlukan pelbagai mesin atau mesin berbilang mesin tunggal. Tempat

Apabila memasang pytorch pada sistem CentOS, anda perlu dengan teliti memilih versi yang sesuai dan pertimbangkan faktor utama berikut: 1. Keserasian Persekitaran Sistem: Sistem Operasi: Adalah disyorkan untuk menggunakan CentOS7 atau lebih tinggi. CUDA dan CUDNN: Versi Pytorch dan versi CUDA berkait rapat. Sebagai contoh, Pytorch1.9.0 memerlukan CUDA11.1, manakala Pytorch2.0.1 memerlukan CUDA11.3. Versi CUDNN juga mesti sepadan dengan versi CUDA. Sebelum memilih versi PyTorch, pastikan anda mengesahkan bahawa versi CUDA dan CUDNN yang serasi telah dipasang. Versi Python: Cawangan Rasmi Pytorch

CentOS Memasang Nginx memerlukan mengikuti langkah-langkah berikut: memasang kebergantungan seperti alat pembangunan, pcre-devel, dan openssl-devel. Muat turun Pakej Kod Sumber Nginx, unzip dan menyusun dan memasangnya, dan tentukan laluan pemasangan sebagai/usr/local/nginx. Buat pengguna Nginx dan kumpulan pengguna dan tetapkan kebenaran. Ubah suai fail konfigurasi nginx.conf, dan konfigurasikan port pendengaran dan nama domain/alamat IP. Mulakan perkhidmatan Nginx. Kesalahan biasa perlu diberi perhatian, seperti isu ketergantungan, konflik pelabuhan, dan kesilapan fail konfigurasi. Pengoptimuman prestasi perlu diselaraskan mengikut keadaan tertentu, seperti menghidupkan cache dan menyesuaikan bilangan proses pekerja.
