Polar mengira persentil
Saya mempunyai bingkai data polar dengan satu lajur yang mengandungi tarikh dan lajur lain yang mengandungi harga, dan saya ingin mengira persentil untuk setiap lajur dalam tetingkap 252 x 3 pemerhatian.
Untuk melakukan ini, saya melakukan ini:
prices = prices.sort(by=["date"]) rank_cols = list(set(prices.columns).difference("date")) percentiles = ( prices.sort(by=["date"]) .set_sorted("date") .group_by_dynamic( index_column=["date"], every="1i", start_by="window", period="756i" ) .agg( [ (pl.col(col).rank() * 100.0 / pl.col(col).count()).alias( f"{col}_percentile" ) for col in rank_cols ] ) )
Tetapi pengecualian yang dilemparkan ialah:
traceback (most recent call last): file "<string>", line 6, in <module> file "/usr/local/lib/python3.10/site-packages/polars/dataframe/group_by.py", line 1047, in agg self.df.lazy() file "/usr/local/lib/python3.10/site-packages/polars/lazyframe/frame.py", line 1706, in collect return wrap_df(ldf.collect()) polars.exceptions.invalidoperationerror: argument in operation 'group_by_dynamic' is not explicitly sorted - if your data is already sorted, set the sorted flag with: '.set_sorted()'. - if your data is not sorted, sort the 'expr/series/column' first.
Dalam kod saya telah melakukan seperti yang dicadangkan tetapi pengecualian masih wujud.
Editor:
Membuat beberapa perubahan seperti yang dicadangkan oleh @hericks.
import polars as pl import pandas as pd from datetime import datetime, timedelta # generate 10 dates starting from today start_date = datetime.now().date() date_list = [start_date + timedelta(days=i) for i in range(10)] # generate random prices for each date and column data = { 'date': date_list, 'asset_1': [float(f"{i+1}.{i+2}") for i in range(10)], 'asset_2': [float(f"{i+2}.{i+3}") for i in range(10)], 'asset_3': [float(f"{i+3}.{i+4}") for i in range(10)], } prices = pl.dataframe(data) prices = prices.cast({"date": pl.date}) rank_cols = list(set(prices.columns).difference("date")) percentiles = ( prices.sort(by=["date"]) .set_sorted("date") .group_by_dynamic( index_column="date", every="1i", start_by="window", period="4i" ) .agg( [ (pl.col(col).rank() * 100.0 / pl.col(col).count()).alias( f"{col}_percentile" ) for col in rank_cols ] ) )
Sekarang saya faham
pyo3_runtime.panicexception: attempt to divide by zero
Sunting 2:
Masalahnya ialah penggunaan tarikh, saya menukar tarikh dengan integer dan kemudian masalah itu diselesaikan. (Juga ditambah untuk mendapatkan daftar pertama dahulu)
import polars as pl int_list = [i+1 for i in range(6)] # Generate random prices for each date and column data = { 'int_index': int_list, 'asset_1': [1.1, 3.4, 2.6, 4.8, 7.4, 3.2], 'asset_2': [4, 7, 8, 3, 4, 5], 'asset_3': [1, 3, 10, 20, 2, 4], } # Convert the Pandas DataFrame to a Polars DataFrame prices = pl.DataFrame(data) rank_cols = list(set(prices.columns).difference("int_index")) percentiles = ( prices.sort(by="int_index") .set_sorted("int_index") .group_by_dynamic( index_column="int_index", every="1i", start_by="window", period="4i" ) .agg( [ (pl.col(col).rank().first() * 100.0 / pl.col(col).count()).alias( f"{col}_percentile" ) for col in rank_cols ] ) )
Sunting 3:
Idea yang diberikan ialah indeks i mengambil nilai pada indeks i, i+1, i+2, i+3 dan mengira pangkat persentil daftar i berkenaan dengan empat nilai ini.
Sebagai contoh, untuk indeks pertama (1) dalam aset_1, contoh (dan tiga daftar seterusnya) ialah:
1.1, 3.4, 2.6, 4.8, jadi peratusan daftar pertama ialah 25
Untuk aset_1, contoh indeks kedua (2) (dan tiga daftar seterusnya) ialah:
3.4, 2.6, 4.8 dan 7.4, jadi persentil ialah 50.
Jawapan Betul
Saya masih agak meneka apakah jawapan yang anda harapkan, tetapi anda mungkin boleh mulakan dengan yang ini
Jadi, mempertimbangkan data contoh anda:
import polars as pl # generate random prices for each date and column prices = pl.dataframe({ 'int_index': range(6), 'asset_1': [1.1, 3.4, 2.6, 4.8, 7.4, 3.2], 'asset_2': [4, 7, 8, 3, 4, 5], 'asset_3': [1, 3, 10, 20, 2, 4], }) ┌───────────┬─────────┬─────────┬─────────┐ │ int_index ┆ asset_1 ┆ asset_2 ┆ asset_3 │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ i64 ┆ i64 │ ╞═══════════╪═════════╪═════════╪═════════╡ │ 0 ┆ 1.1 ┆ 4 ┆ 1 │ │ 1 ┆ 3.4 ┆ 7 ┆ 3 │ │ 2 ┆ 2.6 ┆ 8 ┆ 10 │ │ 3 ┆ 4.8 ┆ 3 ┆ 20 │ │ 4 ┆ 7.4 ┆ 4 ┆ 2 │ │ 5 ┆ 3.2 ┆ 5 ┆ 4 │ └───────────┴─────────┴─────────┴─────────┘
Gunakan rolling()
创建窗口,然后(与您在问题中所做的相同) - rank().first()
除以 count()
、name.suffix()
untuk menetapkan nama baharu pada lajur:
cols = pl.all().exclude('int_index') percentiles = ( prices.sort(by="int_index") .rolling(index_column="int_index", period="4i", offset="0i", closed="left") .agg((cols.rank().first() * 100 / cols.count()).name.suffix('_percentile')) ) ┌───────────┬────────────────────┬────────────────────┬────────────────────┐ │ int_index ┆ asset_1_percentile ┆ asset_2_percentile ┆ asset_3_percentile │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ f64 ┆ f64 │ ╞═══════════╪════════════════════╪════════════════════╪════════════════════╡ │ 0 ┆ 25.0 ┆ 50.0 ┆ 25.0 │ │ 1 ┆ 50.0 ┆ 75.0 ┆ 50.0 │ │ 2 ┆ 25.0 ┆ 100.0 ┆ 75.0 │ │ 3 ┆ 66.666667 ┆ 33.333333 ┆ 100.0 │ │ 4 ┆ 100.0 ┆ 50.0 ┆ 50.0 │ │ 5 ┆ 100.0 ┆ 100.0 ┆ 100.0 │ └───────────┴────────────────────┴────────────────────┴────────────────────┘
Anda juga boleh menyemak kandungan di dalam setiap tetingkap:
( prices.sort(by="int_index") .rolling(index_column="int_index", period="4i", offset="0i", closed="left") .agg(cols) ) ┌───────────┬───────────────────┬─────────────┬───────────────┐ │ int_index ┆ asset_1 ┆ asset_2 ┆ asset_3 │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ list[f64] ┆ list[i64] ┆ list[i64] │ ╞═══════════╪═══════════════════╪═════════════╪═══════════════╡ │ 0 ┆ [1.1, 3.4, … 4.8] ┆ [4, 7, … 3] ┆ [1, 3, … 20] │ │ 1 ┆ [3.4, 2.6, … 7.4] ┆ [7, 8, … 4] ┆ [3, 10, … 2] │ │ 2 ┆ [2.6, 4.8, … 3.2] ┆ [8, 3, … 5] ┆ [10, 20, … 4] │ │ 3 ┆ [4.8, 7.4, 3.2] ┆ [3, 4, 5] ┆ [20, 2, 4] │ │ 4 ┆ [7.4, 3.2] ┆ [4, 5] ┆ [2, 4] │ │ 5 ┆ [3.2] ┆ [5] ┆ [4] │ └───────────┴───────────────────┴─────────────┴───────────────┘
Atas ialah kandungan terperinci Polar mengira persentil. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Fastapi ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...
