


Teknologi di sebalik letupan Sora, sebuah artikel yang meringkaskan arah pembangunan terkini model penyebaran
Alamat kertas: https://arxiv.org/pdf/2209.02646.pdf Alamat projek: https://github.com/chq1155/A-Survey-on-Generative-Diffusion-Model?tab= readme-ov-file
- Dalam bidang model resapan, tingkatkan kelajuan pensampelan Salah satu teknologi utama ialah penyulingan pengetahuan. Proses ini melibatkan pengekstrakan pengetahuan daripada model yang besar dan kompleks dan memindahkannya kepada model yang lebih kecil dan lebih cekap. Sebagai contoh, dengan menggunakan penyulingan pengetahuan, kita boleh memudahkan trajektori pensampelan model supaya taburan sasaran dianggarkan dengan kecekapan yang lebih besar pada setiap langkah. Salimans et al menggunakan pendekatan berasaskan persamaan pembezaan biasa (ODE) untuk mengoptimumkan trajektori ini, manakala penyelidik lain membangunkan teknik untuk menganggarkan data bersih secara langsung daripada sampel yang bising, dengan itu mempercepatkan proses pada titik masa T.
Kaedah latihan
- Menambah baik kaedah latihan juga merupakan cara untuk meningkatkan kecekapan pensampelan. Sesetengah penyelidikan menumpukan pada pembelajaran skema resapan baharu, di mana data tidak lagi hanya dipacu dengan hingar Gaussian, tetapi dipetakan ke ruang terpendam melalui kaedah yang lebih kompleks. Sesetengah kaedah ini memberi tumpuan kepada mengoptimumkan proses penyahkodan songsang, seperti melaraskan kedalaman pengekodan, manakala yang lain meneroka reka bentuk skala hingar baharu supaya penambahan hingar tidak lagi statik, tetapi menjadi pembolehubah yang boleh diubah suai semasa proses latihan .
Persampelan tanpa latihan
- Selain melatih model baharu untuk meningkatkan kecekapan, terdapat juga beberapa teknik khusus untuk mempercepatkan proses pensampelan dalam model pra-penyebaran. Pecutan ODE ialah satu teknik yang menggunakan ODE untuk menerangkan proses resapan, membolehkan pensampelan diteruskan dengan lebih pantas. Sebagai contoh, DDIM ialah kaedah yang menggunakan ODE untuk pensampelan, dan penyelidikan seterusnya telah memperkenalkan penyelesai ODE yang lebih cekap, seperti PNDM dan EDM, untuk meningkatkan lagi kelajuan pensampelan.
Digabungkan dengan model generatif lain
Ruang terpendam
- model gabungan VAGM tanpa aliran terpendam atau terpendam seperti dalam melalui pemberatan dikongsi Kehilangan padanan pecahan ialah digunakan untuk mengoptimumkan model codec dan resapan, supaya pengoptimuman ELBO atau kemungkinan log bertujuan untuk membina ruang terpendam yang mudah dipelajari dan menjana sampel. Sebagai contoh, Stable Diffusion mula-mula menggunakan VAE untuk mempelajari ruang terpendam dan kemudian melatih model resapan untuk menerima input teks. DVDP melaraskan komponen ortogon ruang piksel secara dinamik semasa gangguan imej.
Proses hadapan yang inovatif
- Untuk meningkatkan kecekapan dan kekuatan model generatif, penyelidik telah meneroka reka bentuk proses hadapan baharu. Model penjanaan medan Poisson menganggap data sebagai caj, mengarahkan pengedaran mudah kepada pengedaran data di sepanjang garis medan elektrik, yang memberikan pensampelan belakang yang lebih berkuasa daripada model resapan tradisional. PFGM++ membawa konsep ini lebih jauh ke dalam pembolehubah berdimensi tinggi. Model resapan Langevin yang dilembapkan secara kritikal bagi Dockhorn et al memudahkan pembelajaran fungsi pecahan taburan halaju bersyarat menggunakan pembolehubah halaju dalam dinamik Hamilton. Ruang bukan Euclidean Berdasarkan kaedah ini, penyelidikan telah diperluaskan kepada penjanaan teks bahasa, pembahagian graf dan pemampatan tanpa kehilangan. Dalam cabaran multimodal, data terkuantiti vektor ditukar kepada kod, menunjukkan hasil yang lebih baik. Data manifold dalam manifold Riemannian, seperti robotik dan pemodelan protein, memerlukan pensampelan resapan untuk dimasukkan ke dalam manifold Riemannian. Gabungan rangkaian neural graf dan teori resapan, seperti EDP-GNN dan GraphGDP, memproses data graf untuk menangkap invarian pilih atur.
Walaupun model resapan mengoptimumkan ELBO, pengoptimuman kemungkinan kekal sebagai cabaran, terutamanya untuk model resapan masa berterusan. Kaedah seperti ScoreFlow dan model resapan variasi (VDM) mewujudkan hubungan antara latihan MLE dan objektif DSM, di mana teorem Girsanov memainkan peranan penting. Model probabilistik resapan denoising (DDPM) yang dipertingkatkan mencadangkan objektif pembelajaran hibrid yang menggabungkan sempadan bawah variasi dan DSM, serta teknik penyusunan semula yang mudah.
Atas ialah kandungan terperinci Teknologi di sebalik letupan Sora, sebuah artikel yang meringkaskan arah pembangunan terkini model penyebaran. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Bagaimana cara menyesuaikan pertukaran terbuka bijan ke bahasa Cina? Tutorial ini merangkumi langkah -langkah terperinci mengenai komputer dan telefon bimbit Android, dari penyediaan awal hingga proses operasi, dan kemudian menyelesaikan masalah biasa, membantu anda dengan mudah menukar antara muka pertukaran terbuka ke Cina dan cepat memulakan dengan platform perdagangan.

Terdapat banyak cara untuk memusatkan gambar bootstrap, dan anda tidak perlu menggunakan Flexbox. Jika anda hanya perlu berpusat secara mendatar, kelas pusat teks sudah cukup; Jika anda perlu memusatkan elemen secara menegak atau berganda, Flexbox atau Grid lebih sesuai. Flexbox kurang serasi dan boleh meningkatkan kerumitan, manakala grid lebih berkuasa dan mempunyai kos pengajian yang lebih tinggi. Apabila memilih kaedah, anda harus menimbang kebaikan dan keburukan dan memilih kaedah yang paling sesuai mengikut keperluan dan keutamaan anda.

Sepuluh platform perdagangan cryptocurrency teratas termasuk: 1. Okx, 2. Binance, 3. Gate.io, 4. Kraken, 5. Huobi, 6. Coinbase, 7. Kucoin, 8 crypto.com, 9. Keselamatan, kecairan, yuran pengendalian, pemilihan mata wang, antara muka pengguna dan sokongan pelanggan harus dipertimbangkan ketika memilih platform.

Pengiraan C35 pada dasarnya adalah matematik gabungan, yang mewakili bilangan kombinasi yang dipilih dari 3 dari 5 elemen. Formula pengiraan ialah C53 = 5! / (3! * 2!), Yang boleh dikira secara langsung oleh gelung untuk meningkatkan kecekapan dan mengelakkan limpahan. Di samping itu, memahami sifat kombinasi dan menguasai kaedah pengiraan yang cekap adalah penting untuk menyelesaikan banyak masalah dalam bidang statistik kebarangkalian, kriptografi, reka bentuk algoritma, dll.

Sepuluh Platform Perdagangan Mata Wang Maya 2025: 1. Okx, 2. Binance, 3. Gate.io, 4. Kraken, 5. Huobi, 6 Coinbase, 7. Kucoin, 8. Crypto.com, 9. Keselamatan, kecairan, yuran pengendalian, pemilihan mata wang, antara muka pengguna dan sokongan pelanggan harus dipertimbangkan ketika memilih platform.

Platform mata wang digital yang selamat dan boleh dipercayai: 1. Okx, 2. Binance, 3. Gate.io, 4. Kraken, 5. Huobi, 6 Coinbase, 7. Kucoin, 8 crypto.com, 9. Bitfinex, 10. Keselamatan, kecairan, yuran pengendalian, pemilihan mata wang, antara muka pengguna dan sokongan pelanggan harus dipertimbangkan ketika memilih platform.

Disyorkan Aplikasi Perisian Mata Wang Maya Selamat: 1. Okx, 2. Binance, 3. Gate.io, 4. Kraken, 5. Huobi, 6. Coinbase, 7. Kucoin, 8 crypto.com, 9. Bitfinex, 10. Keselamatan, kecairan, yuran pengendalian, pemilihan mata wang, antara muka pengguna dan sokongan pelanggan harus dipertimbangkan ketika memilih platform.

STD :: Unik menghilangkan elemen pendua bersebelahan di dalam bekas dan menggerakkannya ke akhir, mengembalikan iterator yang menunjuk ke elemen pendua pertama. STD :: Jarak mengira jarak antara dua iterators, iaitu bilangan elemen yang mereka maksudkan. Kedua -dua fungsi ini berguna untuk mengoptimumkan kod dan meningkatkan kecekapan, tetapi terdapat juga beberapa perangkap yang perlu diberi perhatian, seperti: STD :: Unik hanya berkaitan dengan unsur -unsur pendua yang bersebelahan. STD :: Jarak kurang cekap apabila berurusan dengan Iterator Akses Bukan Rawak. Dengan menguasai ciri -ciri dan amalan terbaik ini, anda boleh menggunakan sepenuhnya kuasa kedua -dua fungsi ini.
