Jadual Kandungan
Asal usul GIL
Sekatan GIL
Alternatif kepada GIL
Ringkasan" >Ringkasan
Rumah pembangunan bahagian belakang Tutorial Python Evolusi GIL: Landskap Perubahan Python Serentak

Evolusi GIL: Landskap Perubahan Python Serentak

Mar 02, 2024 pm 04:10 PM
python multithreading gil serentak pelbagai pemprosesan

GIL 的演变:并发 Python 的不断变化格局

Jurubahasa global

lock (GIL) dalam python telah menjadi topik yang hangat diperkatakan sejak penubuhannya. Walaupun GIL memastikan bahawa jurubahasa Python hanya melaksanakan satu benang pada satu masa, dengan itu mengekalkan ingatan keselamatan, ia juga mengehadkan kemungkinan konkurensi. Artikel ini akan meneroka evolusi GIL daripada reka bentuk awalnya kepada status semasa dan hala tuju masa hadapan.

Asal usul GIL

GIL pada asalnya diperkenalkan dalam Python 1.5 untuk menghalang benang berbilang daripada mengubah suai objek yang sama secara serentak, mengakibatkan kerosakan data. Pada masa itu, Python digunakan terutamanya pada komputer teras tunggal, dan GIL bukanlah faktor pengehad utama.

Sekatan GIL

Dengan populariti komputer berbilang teras, batasan GIL telah menjadi jelas. Oleh kerana GIL hanya membenarkan satu utas untuk dilaksanakan pada satu masa, kod serentak hanya boleh dijalankan pada satu teras. Ini boleh menyebabkan masalah prestasi untuk aplikasi yang memerlukan banyak keselarasan.

Alternatif kepada GIL

Untuk mengatasi batasan GIL, beberapa alternatif telah dibangunkan:

  • Berbilang proses: Buat berbilang proses Python, setiap satu dengan GILnya sendiri. Ini membolehkan konkurensi sebenar, tetapi mungkin kurang cekap disebabkan oleh overhed komunikasi antara proses.
  • Perpustakaan pihak ketiga: seperti , yang menyediakan concurrent.futuresmultiprocessingalat untuk pelaksanaan tugasan selari dan serentak. Pustaka ini menggunakan kumpulan proses atau kolam benang untuk mengurus GIL, membolehkan kod dilaksanakan pada berbilang teras.
  • Coroutine (coroutine): Coroutine ialah mekanisme serentak ringan yang membolehkan pelbagai tugas dijeda dan disambung semula dalam urutan. Coroutine tidak memerlukan GIL, tetapi mereka bergantung pada penjadualan manual dan penukaran konteks.
Peningkatan GIL dalam Python 3.8

Dalam Python 3.8, penambahbaikan besar pada GIL telah diperkenalkan untuk meningkatkan prestasi serentak. Penambahbaikan ini termasuk:

  • Keluaran GIL berasaskan acara: GIL kini boleh dikeluarkan semasa acara gelung acara, seperti operasi I/O. Ini membenarkan utas lain untuk dilaksanakan semasa gelung acara mengendalikan operasi I/O.
  • Latensi GIL Adaptif: Kependaman GIL melaraskan berdasarkan berapa banyak aplikasi anda menggunakan pelbagai benang. Apabila menggunakan lebih sedikit utas, kependaman GIL lebih panjang, membolehkan lebih banyak keselarasan.
Peningkatan GIL dalam Python 3.10

Python 3.10 memperkenalkan penambahbaikan lanjut kepada GIL yang dipanggil

GIL berbutir halus. GIL berbutir halus mengecilkan skop GIL kepada blok kod yang lebih kecil, membolehkan kawalan serentak yang lebih halus. Ini amat berfaedah untuk aplikasi yang memerlukan konkurensi semasa operasi atom yang kerap.

Pandangan Masa Depan

Masa depan GIL kekal tidak menentu. Walaupun pasukan pembangunan Python komited untuk terus menambah baik GIL, ada kemungkinan ia akan dialih keluar sepenuhnya dalam versi masa hadapan. Alternatif, seperti multiprocessing dan coroutines, terus matang dan mungkin menggantikan GIL sebagai mekanisme pilihan untuk concurrency dalam Python.

Kod demo

Gunakan untuk pemprosesan selari: concurrent.futures

import concurrent.futures

def task(n):
return n * n

with concurrent.futures.ProcessPoolExecutor() as executor:
results = executor.map(task, range(10))
Salin selepas log masuk

Gunakan async<strong>io<code>async<strong class="keylink">io</strong> untuk coroutine:

import asyncio

async def task(n):
return n * n

async def main():
tasks = [task(n) for n in range(10)]
results = await asyncio.gather(*tasks)

asyncio.run(main())
Salin selepas log masuk

Evolusi GIL dalam konkurensi Python adalah masalah yang kompleks dan mencabar. Memandangkan Python semakin memberi penekanan pada pemprosesan berbilang teras dan pengkomputeran berprestasi tinggi, masa depan GIL akan terus diawasi dengan teliti. Pembangun perlu menimbang faedah dan had GIL dan memilih mekanisme konkurensi yang sesuai untuk aplikasi tertentu mereka. Dengan memahami evolusi GIL, pembangun boleh membuat keputusan termaklum dan mencipta aplikasi Python serentak yang cekap dan berskala.

Atas ialah kandungan terperinci Evolusi GIL: Landskap Perubahan Python Serentak. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1663
14
Tutorial PHP
1266
29
Tutorial C#
1239
24
PHP dan Python: Paradigma yang berbeza dijelaskan PHP dan Python: Paradigma yang berbeza dijelaskan Apr 18, 2025 am 12:26 AM

PHP terutamanya pengaturcaraan prosedur, tetapi juga menyokong pengaturcaraan berorientasikan objek (OOP); Python menyokong pelbagai paradigma, termasuk pengaturcaraan OOP, fungsional dan prosedur. PHP sesuai untuk pembangunan web, dan Python sesuai untuk pelbagai aplikasi seperti analisis data dan pembelajaran mesin.

Memilih antara php dan python: panduan Memilih antara php dan python: panduan Apr 18, 2025 am 12:24 AM

PHP sesuai untuk pembangunan web dan prototaip pesat, dan Python sesuai untuk sains data dan pembelajaran mesin. 1.Php digunakan untuk pembangunan web dinamik, dengan sintaks mudah dan sesuai untuk pembangunan pesat. 2. Python mempunyai sintaks ringkas, sesuai untuk pelbagai bidang, dan mempunyai ekosistem perpustakaan yang kuat.

Python vs JavaScript: Keluk Pembelajaran dan Kemudahan Penggunaan Python vs JavaScript: Keluk Pembelajaran dan Kemudahan Penggunaan Apr 16, 2025 am 12:12 AM

Python lebih sesuai untuk pemula, dengan lengkung pembelajaran yang lancar dan sintaks ringkas; JavaScript sesuai untuk pembangunan front-end, dengan lengkung pembelajaran yang curam dan sintaks yang fleksibel. 1. Sintaks Python adalah intuitif dan sesuai untuk sains data dan pembangunan back-end. 2. JavaScript adalah fleksibel dan digunakan secara meluas dalam pengaturcaraan depan dan pelayan.

PHP dan Python: menyelam mendalam ke dalam sejarah mereka PHP dan Python: menyelam mendalam ke dalam sejarah mereka Apr 18, 2025 am 12:25 AM

PHP berasal pada tahun 1994 dan dibangunkan oleh Rasmuslerdorf. Ia pada asalnya digunakan untuk mengesan pelawat laman web dan secara beransur-ansur berkembang menjadi bahasa skrip sisi pelayan dan digunakan secara meluas dalam pembangunan web. Python telah dibangunkan oleh Guidovan Rossum pada akhir 1980 -an dan pertama kali dikeluarkan pada tahun 1991. Ia menekankan kebolehbacaan dan kesederhanaan kod, dan sesuai untuk pengkomputeran saintifik, analisis data dan bidang lain.

Cara menjalankan Python Kod Sublime Cara menjalankan Python Kod Sublime Apr 16, 2025 am 08:48 AM

Untuk menjalankan kod python dalam teks luhur, anda perlu memasang plug-in python terlebih dahulu, kemudian buat fail .py dan tulis kod itu, dan akhirnya tekan Ctrl B untuk menjalankan kod, dan output akan dipaparkan dalam konsol.

Di mana untuk menulis kod di vscode Di mana untuk menulis kod di vscode Apr 15, 2025 pm 09:54 PM

Kod penulisan dalam Kod Visual Studio (VSCode) adalah mudah dan mudah digunakan. Hanya pasang VSCode, buat projek, pilih bahasa, buat fail, tulis kod, simpan dan jalankannya. Kelebihan vscode termasuk sumber lintas platform, bebas dan terbuka, ciri-ciri yang kuat, sambungan yang kaya, dan ringan dan cepat.

Golang vs Python: Prestasi dan Skala Golang vs Python: Prestasi dan Skala Apr 19, 2025 am 12:18 AM

Golang lebih baik daripada Python dari segi prestasi dan skalabiliti. 1) Ciri-ciri jenis kompilasi Golang dan model konkurensi yang cekap menjadikannya berfungsi dengan baik dalam senario konvensional yang tinggi. 2) Python, sebagai bahasa yang ditafsirkan, melaksanakan perlahan -lahan, tetapi dapat mengoptimumkan prestasi melalui alat seperti Cython.

Bolehkah kod studio visual digunakan dalam python Bolehkah kod studio visual digunakan dalam python Apr 15, 2025 pm 08:18 PM

Kod VS boleh digunakan untuk menulis Python dan menyediakan banyak ciri yang menjadikannya alat yang ideal untuk membangunkan aplikasi python. Ia membolehkan pengguna untuk: memasang sambungan python untuk mendapatkan fungsi seperti penyempurnaan kod, penonjolan sintaks, dan debugging. Gunakan debugger untuk mengesan kod langkah demi langkah, cari dan selesaikan kesilapan. Mengintegrasikan Git untuk Kawalan Versi. Gunakan alat pemformatan kod untuk mengekalkan konsistensi kod. Gunakan alat linting untuk melihat masalah yang berpotensi lebih awal.

See all articles