


Pembelajaran Mesin: 19 Projek Pembelajaran Pengukuhan (RL) Teratas di Github
Pembelajaran pengukuhan (RL) ialah kaedah pembelajaran mesin yang belajar melalui percubaan dan kesilapan oleh ejen. Algoritma pembelajaran pengukuhan digunakan dalam banyak bidang, seperti permainan, robotik dan kewangan.
Matlamat RL adalah untuk menemui strategi yang memaksimumkan pulangan jangka panjang yang dijangkakan. Algoritma pembelajaran pengukuhan secara amnya dibahagikan kepada dua kategori: berasaskan model dan tanpa model. Algoritma berasaskan model menggunakan model persekitaran untuk merancang laluan tindakan yang optimum. Pendekatan ini bergantung pada pemodelan persekitaran yang tepat dan kemudian menggunakan model untuk meramalkan hasil tindakan yang berbeza. Sebaliknya, algoritma bebas model belajar secara langsung daripada interaksi dengan persekitaran dan tidak memerlukan pemodelan eksplisit persekitaran. Kaedah ini lebih sesuai untuk situasi di mana model persekitaran sukar diperoleh atau tidak tepat. Realitinya, sebaliknya, algoritma pembelajaran tetulang tanpa model tidak memerlukan pemodelan eksplisit persekitaran, tetapi belajar melalui pengalaman berterusan. Algoritma RL popular seperti Q-learning dan SARSA direka bentuk berdasarkan idea ini.
Mengapa pembelajaran peneguhan penting?
15. Pembelajaran Peneguhan Dalam Dari Demonstrasi: Kit alat untuk ejen latihan dengan kehadiran demonstrasi atau ganjaran manusia.
URL kod sumber projek: https://ieeexplore.ieee.org/document/9705112
16 Ejen TensorFlow: Perpustakaan untuk melatih ejen pembelajaran pengukuhan menggunakan TensorFlow.
URL kod sumber projek: https://www.tensorflow.org/agents
17 Persekitaran pembelajaran PyGame: Kit alat untuk membangun dan menilai ejen AI dalam rangka kerja permainan arked klasik.
URL kod sumber projek: https://github.com/ntasfi/PyGame-Learning-Environment
18: Projek sumber terbuka yang membolehkan pembangun menggunakan Minecraft sebagai platform penyelidikan kecerdasan buatan.
URL kod sumber projek: https://github.com/microsoft/malmo
19: Kit alat untuk membangunkan, menilai dan menguji kenderaan autonomi dalam persekitaran simulasi.
URL kod sumber projek: https://microsoft.github.io/AirSim/
Bagaimanakah anda memulakan pembangunan RL sendiri?
Jika anda berminat untuk membangunkan aplikasi RL anda sendiri, tempat terbaik untuk bermula ialah dengan memuat turun Kit Pembangunan Perisian (SDK). SDK menyediakan anda semua alatan dan perpustakaan yang anda perlukan untuk membangunkan aplikasi RL.
Sebaik sahaja anda mempunyai SDK, anda boleh memilih daripada beberapa bahasa pengaturcaraan dan rangka kerja yang berbeza. Contohnya, jika anda berminat untuk membangunkan enjin Unity, anda boleh menggunakan SDK Unity.
Jika anda berminat untuk membangunkan Unreal Engine, anda boleh menggunakan Unreal Engine 4 SDK. Sebaik sahaja anda memilih platform dan bahasa, anda boleh mula membuat aplikasi RL anda. Selain itu, anda boleh mendapatkan tutorial dan kursus dalam talian untuk membantu anda memulakan pembangunan RL.
Akhir sekali, adalah penting untuk diingat bahawa membangunkan aplikasi RL memerlukan latihan dan kesabaran – tetapi dengan dedikasi dan kerja keras yang mencukupi, anda boleh menjadi pakar dalam bidang tersebut.
Selain itu, jika anda mencari sumber untuk mengetahui lebih lanjut tentang pembelajaran pengukuhan, anda boleh menemui banyak tutorial dan kursus dalam talian.
Selain itu, terdapat banyak buku dan kertas penyelidikan membincangkan kemajuan terkini dalam algoritma dan teknik pembelajaran pengukuhan. Selain itu, menghadiri persidangan atau bengkel ialah cara terbaik untuk didedahkan kepada pembelajaran pengukuhan
Kesimpulan
Pembelajaran pengukuhan ialah bidang yang menarik dan berkembang pesat dengan aplikasi merentas pelbagai industri. Ia membolehkan kami membangunkan ejen pintar yang boleh belajar daripada persekitaran mereka dan membuat keputusan berdasarkan data.
Untuk memulakan pembangunan RL, anda perlu memuat turun SDK dan memilih bahasa serta rangka kerja yang paling sesuai dengan projek anda.
Selain itu, anda perlu meluangkan masa untuk memahami asas-asas RL dan mengamalkan pembangunan ejen. Akhir sekali, terdapat banyak sumber dalam talian untuk membantu anda mengetahui lebih lanjut tentang RL. Dengan dedikasi dan kerja keras yang cukup, anda boleh menjadi pakar dalam bidang anda.
Atas ialah kandungan terperinci Pembelajaran Mesin: 19 Projek Pembelajaran Pengukuhan (RL) Teratas di Github. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Laman web ini melaporkan pada 27 Jun bahawa Jianying ialah perisian penyuntingan video yang dibangunkan oleh FaceMeng Technology, anak syarikat ByteDance Ia bergantung pada platform Douyin dan pada asasnya menghasilkan kandungan video pendek untuk pengguna platform tersebut Windows , MacOS dan sistem pengendalian lain. Jianying secara rasmi mengumumkan peningkatan sistem keahliannya dan melancarkan SVIP baharu, yang merangkumi pelbagai teknologi hitam AI, seperti terjemahan pintar, penonjolan pintar, pembungkusan pintar, sintesis manusia digital, dsb. Dari segi harga, yuran bulanan untuk keratan SVIP ialah 79 yuan, yuran tahunan ialah 599 yuan (nota di laman web ini: bersamaan dengan 49.9 yuan sebulan), langganan bulanan berterusan ialah 59 yuan sebulan, dan langganan tahunan berterusan ialah 499 yuan setahun (bersamaan dengan 41.6 yuan sebulan) . Di samping itu, pegawai yang dipotong juga menyatakan bahawa untuk meningkatkan pengalaman pengguna, mereka yang telah melanggan VIP asal

Tingkatkan produktiviti, kecekapan dan ketepatan pembangun dengan menggabungkan penjanaan dipertingkatkan semula dan memori semantik ke dalam pembantu pengekodan AI. Diterjemah daripada EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, pengarang JanakiramMSV. Walaupun pembantu pengaturcaraan AI asas secara semulajadi membantu, mereka sering gagal memberikan cadangan kod yang paling relevan dan betul kerana mereka bergantung pada pemahaman umum bahasa perisian dan corak penulisan perisian yang paling biasa. Kod yang dijana oleh pembantu pengekodan ini sesuai untuk menyelesaikan masalah yang mereka bertanggungjawab untuk menyelesaikannya, tetapi selalunya tidak mematuhi piawaian pengekodan, konvensyen dan gaya pasukan individu. Ini selalunya menghasilkan cadangan yang perlu diubah suai atau diperhalusi agar kod itu diterima ke dalam aplikasi

Model Bahasa Besar (LLM) dilatih pada pangkalan data teks yang besar, di mana mereka memperoleh sejumlah besar pengetahuan dunia sebenar. Pengetahuan ini dibenamkan ke dalam parameter mereka dan kemudiannya boleh digunakan apabila diperlukan. Pengetahuan tentang model ini "diperbaharui" pada akhir latihan. Pada akhir pra-latihan, model sebenarnya berhenti belajar. Selaraskan atau perhalusi model untuk mempelajari cara memanfaatkan pengetahuan ini dan bertindak balas dengan lebih semula jadi kepada soalan pengguna. Tetapi kadangkala pengetahuan model tidak mencukupi, dan walaupun model boleh mengakses kandungan luaran melalui RAG, ia dianggap berfaedah untuk menyesuaikan model kepada domain baharu melalui penalaan halus. Penalaan halus ini dilakukan menggunakan input daripada anotasi manusia atau ciptaan LLM lain, di mana model menemui pengetahuan dunia sebenar tambahan dan menyepadukannya

Untuk mengetahui lebih lanjut tentang AIGC, sila layari: 51CTOAI.x Komuniti https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou berbeza daripada bank soalan tradisional yang boleh dilihat di mana-mana sahaja di Internet memerlukan pemikiran di luar kotak. Model Bahasa Besar (LLM) semakin penting dalam bidang sains data, kecerdasan buatan generatif (GenAI) dan kecerdasan buatan. Algoritma kompleks ini meningkatkan kemahiran manusia dan memacu kecekapan dan inovasi dalam banyak industri, menjadi kunci kepada syarikat untuk kekal berdaya saing. LLM mempunyai pelbagai aplikasi Ia boleh digunakan dalam bidang seperti pemprosesan bahasa semula jadi, penjanaan teks, pengecaman pertuturan dan sistem pengesyoran. Dengan belajar daripada sejumlah besar data, LLM dapat menjana teks

Editor |ScienceAI Question Answering (QA) set data memainkan peranan penting dalam mempromosikan penyelidikan pemprosesan bahasa semula jadi (NLP). Set data QA berkualiti tinggi bukan sahaja boleh digunakan untuk memperhalusi model, tetapi juga menilai dengan berkesan keupayaan model bahasa besar (LLM), terutamanya keupayaan untuk memahami dan menaakul tentang pengetahuan saintifik. Walaupun pada masa ini terdapat banyak set data QA saintifik yang meliputi bidang perubatan, kimia, biologi dan bidang lain, set data ini masih mempunyai beberapa kekurangan. Pertama, borang data adalah agak mudah, kebanyakannya adalah soalan aneka pilihan. Ia mudah dinilai, tetapi mengehadkan julat pemilihan jawapan model dan tidak dapat menguji sepenuhnya keupayaan model untuk menjawab soalan saintifik. Sebaliknya, Soal Jawab terbuka

Editor |. KX Dalam bidang penyelidikan dan pembangunan ubat, meramalkan pertalian pengikatan protein dan ligan dengan tepat dan berkesan adalah penting untuk pemeriksaan dan pengoptimuman ubat. Walau bagaimanapun, kajian semasa tidak mengambil kira peranan penting maklumat permukaan molekul dalam interaksi protein-ligan. Berdasarkan ini, penyelidik dari Universiti Xiamen mencadangkan rangka kerja pengekstrakan ciri berbilang mod (MFE) novel, yang buat pertama kalinya menggabungkan maklumat mengenai permukaan protein, struktur dan jujukan 3D, dan menggunakan mekanisme perhatian silang untuk membandingkan ciri modaliti yang berbeza penjajaran. Keputusan eksperimen menunjukkan bahawa kaedah ini mencapai prestasi terkini dalam meramalkan pertalian mengikat protein-ligan. Tambahan pula, kajian ablasi menunjukkan keberkesanan dan keperluan maklumat permukaan protein dan penjajaran ciri multimodal dalam rangka kerja ini. Penyelidikan berkaitan bermula dengan "S

Menurut berita dari laman web ini pada 1 Ogos, SK Hynix mengeluarkan catatan blog hari ini (1 Ogos), mengumumkan bahawa ia akan menghadiri Global Semiconductor Memory Summit FMS2024 yang akan diadakan di Santa Clara, California, Amerika Syarikat dari 6 hingga 8 Ogos, mempamerkan banyak produk penjanaan teknologi baru. Pengenalan kepada Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage), dahulunya Sidang Kemuncak Memori Flash (FlashMemorySummit) terutamanya untuk pembekal NAND, dalam konteks peningkatan perhatian kepada teknologi kecerdasan buatan, tahun ini dinamakan semula sebagai Sidang Kemuncak Memori dan Penyimpanan Masa Depan (FutureMemoryandStorage) kepada jemput vendor DRAM dan storan serta ramai lagi pemain. Produk baharu SK hynix dilancarkan tahun lepas

Menurut berita dari laman web ini pada 5 Julai, GlobalFoundries mengeluarkan kenyataan akhbar pada 1 Julai tahun ini, mengumumkan pemerolehan teknologi power gallium nitride (GaN) Tagore Technology dan portfolio harta intelek, dengan harapan dapat mengembangkan bahagian pasarannya dalam kereta dan Internet of Things dan kawasan aplikasi pusat data kecerdasan buatan untuk meneroka kecekapan yang lebih tinggi dan prestasi yang lebih baik. Memandangkan teknologi seperti AI generatif terus berkembang dalam dunia digital, galium nitrida (GaN) telah menjadi penyelesaian utama untuk pengurusan kuasa yang mampan dan cekap, terutamanya dalam pusat data. Laman web ini memetik pengumuman rasmi bahawa semasa pengambilalihan ini, pasukan kejuruteraan Tagore Technology akan menyertai GLOBALFOUNDRIES untuk membangunkan lagi teknologi gallium nitride. G
