


Pembelajaran mesin kuasa pemprosesan bahasa semula jadi Python: pengelasan, pengelompokan dan pengekstrakan maklumat
Kategori
Pengkelasan melibatkan penugasan data teks kepada kategori yang dipratentukan. Dalam NLP ini mungkin termasuk mengenal pasti spam, analisis sentimen atau klasifikasi topik. scikit-learn ialah perpustakaan python popular yang menyediakan rangkaian ML algoritma untuk pengelasan, seperti Mesin Vektor Sokongan (SVM) dan Naive Bayes. Dengan menggunakan model terlatih untuk mengklasifikasikan teks baharu, kami boleh mengautomatikkan tugasan yang sebelum ini memerlukan pelaksanaan manual.
Berkelompok
Pengkelompokan ialah teknik pembelajaran tanpa pengawasan yang digunakan untuk mengumpulkan titik data ke dalam kategori yang berbeza tanpa mentakrifkan kategori tersebut. Dalam NLP, pengelompokan boleh digunakan untuk mengenal pasti corak dan topik dalam teks, seperti menemui topik berbeza dalam korpus teks atau mengumpulkan ulasan pelanggan. scikit-learn menyediakan pelbagai jenis algoritma pengelompokan seperti pengelompokan k-means dan pengelompokan hierarki.
Pengambilan maklumat
Pengekstrakan maklumat melibatkan pengekstrakan data berstruktur daripada teks. Dalam NLP, ini mungkin termasuk mengekstrak acara, entiti atau perhubungan. spaCy ialah perpustakaan Python yang direka untuk pengekstrakan maklumat. Ia menyediakan model pra-latihan yang boleh mengenali pelbagai jenis entiti seperti orang, tempat dan organisasi. Dengan menggunakan gabungan peraturan dan algoritma ML, kami boleh mengekstrak maklumat berharga daripada teks tidak berstruktur.
Kes permohonan
- Pengesanan Spam: Algoritma pengelasan boleh digunakan untuk membina penapis spam yang mengenal pasti spam secara automatik berdasarkan data latihan yang diberikan.
- Analisis Sentimen: Teknologi klasifikasi teks boleh digunakan untuk menganalisis siaran media sosial atau ulasan produk dan menentukan pendapat umum tentang topik tertentu.
- TeksAlgoritma pengelompokan boleh digunakan untuk mengumpulkan dokumen teks besar ke dalam topik yang berbeza, mencipta topik yang disasarkan.
- Segmentasi Pelanggan: Teknologi pengekstrakan maklumat boleh digunakan untuk mengekstrak maklumat penting daripada maklum balas dan tinjauan pelanggan untuk mengenal pasti ciri dan pilihan kumpulan pelanggan yang berbeza.
- Pembinaan asas pengetahuan: Algoritma pengekstrakan maklumat boleh digunakan untuk mengekstrak data berstruktur daripada korpora teks untuk membina pangkalan pengetahuan untuk sistem menjawab soalan dan penjanaan bahasa semula jadi.
Amalan Terbaik
- Latih model ML menggunakan set data berlabel untuk meningkatkan ketepatan.
- Laraskan parameter algoritma kepada mengoptimumkanprestasi.
- Gunakan pengesahan silang untuk mengelakkan pemasangan berlebihan dan memastikan keupayaan generalisasi model.
- Pertimbangkan untuk menggunakan model atau benam yang telah terlatih untuk meningkatkan prestasi.
- Menilai dan memperhalusi model secara berterusan untuk mengekalkan prestasi optimum dari semasa ke semasa.
Dengan memanfaatkan kuasa ML, Python NLP boleh mengautomasikan tugas yang kompleks, meningkatkan ketepatan dan mengekstrak cerapan berharga daripada data teks. Memandangkan bidang NLP dan ML terus berkembang, kami boleh mengharapkan untuk melihat lebih banyak aplikasi dan inovasi yang menarik pada masa hadapan.
Atas ialah kandungan terperinci Pembelajaran mesin kuasa pemprosesan bahasa semula jadi Python: pengelasan, pengelompokan dan pengekstrakan maklumat. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas



Penyelesaian kepada Isu Kebenaran Semasa Melihat Versi Python di Terminal Linux Apabila anda cuba melihat versi Python di Terminal Linux, masukkan Python ...

Apabila menggunakan Perpustakaan Pandas Python, bagaimana untuk menyalin seluruh lajur antara dua data data dengan struktur yang berbeza adalah masalah biasa. Katakan kita mempunyai dua DAT ...

Bagaimana Mengajar Asas Pengaturcaraan Pemula Komputer Dalam masa 10 jam? Sekiranya anda hanya mempunyai 10 jam untuk mengajar pemula komputer beberapa pengetahuan pengaturcaraan, apa yang akan anda pilih untuk mengajar ...

Cara mengelakkan dikesan semasa menggunakan fiddlerevery di mana untuk bacaan lelaki-dalam-pertengahan apabila anda menggunakan fiddlerevery di mana ...

Ekspresi biasa adalah alat yang berkuasa untuk memadankan corak dan manipulasi teks dalam pengaturcaraan, meningkatkan kecekapan dalam pemprosesan teks merentasi pelbagai aplikasi.

Bagaimanakah Uvicorn terus mendengar permintaan HTTP? Uvicorn adalah pelayan web ringan berdasarkan ASGI. Salah satu fungsi terasnya ialah mendengar permintaan HTTP dan teruskan ...

Artikel ini membincangkan perpustakaan Python yang popular seperti Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask, dan Permintaan, memperincikan kegunaan mereka dalam pengkomputeran saintifik, analisis data, visualisasi, pembelajaran mesin, pembangunan web, dan h

Di Python, bagaimana untuk membuat objek secara dinamik melalui rentetan dan panggil kaedahnya? Ini adalah keperluan pengaturcaraan yang biasa, terutamanya jika perlu dikonfigurasikan atau dijalankan ...
