


StreamingT2V, penjana video panjang dua minit dan 1,200 bingkai, ada di sini, dan kod itu akan menjadi sumber terbuka
Tembakan luas medan perang, stormtroopers berlari...
prompt: Tembakan lebar medan perang, stormtroopers berlari...
Video 2 minit ini dengan teks 1200 bingkai adalah video -ke-video) model. Walaupun kesan AI masih jelas, watak dan adegan menunjukkan konsistensi yang agak baik.
Bagaimana ini dilakukan? Anda harus tahu bahawa walaupun kualiti penjanaan dan kualiti penjajaran teks teknologi video Vincent agak baik sejak beberapa tahun kebelakangan ini, kebanyakan kaedah sedia ada memfokuskan pada penjanaan video pendek (biasanya 16 atau 24 bingkai panjang). Walau bagaimanapun, kaedah sedia ada yang berfungsi untuk video pendek sering gagal berfungsi dengan video panjang (≥ 64 bingkai).
Malah menghasilkan urutan pendek selalunya memerlukan latihan yang mahal, seperti langkah latihan melebihi 260K dan saiz kelompok melebihi 4500. Jika anda tidak melatih video yang lebih panjang dan menggunakan penjana video pendek untuk menghasilkan video yang panjang, video panjang yang terhasil selalunya tidak berkualiti. Kaedah autoregresif sedia ada (menjana video pendek baharu dengan menggunakan beberapa bingkai terakhir video pendek, dan kemudian mensintesis video panjang) juga mempunyai beberapa masalah seperti penukaran adegan yang tidak konsisten.
Untuk mengimbangi kelemahan kaedah sedia ada, Picsart AI Research dan institusi lain bersama-sama mencadangkan kaedah video Vincent baharu: StreamingT2V. Kaedah ini menggunakan teknologi autoregresif dan menggabungkannya dengan modul memori jangka pendek yang panjang, yang membolehkannya menjana video panjang dengan koheren temporal yang kuat. . https ://streamingt2v.github.io/
- Oleh itu, pasukan mengemukakan. syarat Modul Perhatian (CAM). CAM menggunakan mekanisme perhatiannya untuk menyepadukan maklumat daripada bingkai sebelumnya secara berkesan untuk menghasilkan bingkai baharu, dan boleh mengendalikan gerakan dalam bingkai baharu secara bebas tanpa dihadkan oleh struktur atau bentuk bingkai sebelumnya.
- Untuk menyelesaikan masalah perubahan penampilan orang dan objek dalam video yang dihasilkan, pasukan itu juga mencadangkan modul pemeliharaan penampilan (APM): ia boleh mengekstrak maklumat penampilan objek atau adegan global daripada imej awal ( bingkai sauh), dan gunakan maklumat ini untuk mengawal selia proses penjanaan video untuk semua blok video.
- Untuk meningkatkan lagi kualiti dan resolusi penjanaan video panjang, pasukan itu menambah baik model peningkatan video untuk tugas penjanaan autoregresif. Untuk melakukan ini, pasukan memilih model video Vincent resolusi tinggi dan menggunakan kaedah SDEdit untuk meningkatkan kualiti 24 blok video berturut-turut (8 daripadanya bertindih).
Untuk menjadikan peralihan peningkatan blok video lancar, mereka juga mereka bentuk kaedah pengadunan rawak yang menggabungkan blok video dipertingkat bertindih dengan cara yang lancar.
Kaedah
Mula-mula, hasilkan video 5 saat pada resolusi 256 × 256 (16fps) dan kemudian tingkatkan kepada resolusi yang lebih tinggi (720 × 720). Rajah 2 menunjukkan aliran kerja lengkapnya.
Bahagian penjanaan video panjang terdiri daripada Peringkat Permulaan dan Peringkat T2V Penstriman.
Antaranya, fasa permulaan menggunakan model video Vincent yang telah dilatih (contohnya, anda boleh menggunakan Modelscope) untuk menjana blok video 16 bingkai pertama manakala fasa video Vincent penstriman menjana bingkai seterusnya secara autoregresif Kandungan baharu.
Untuk proses autoregresif (lihat Rajah 3), CAM yang baru dicadangkan oleh pasukan boleh menggunakan maklumat jangka pendek 8 bingkai terakhir bagi blok video sebelumnya untuk mencapai pertukaran yang lancar antara blok. Di samping itu, mereka juga akan menggunakan modul APM yang baru dicadangkan untuk mengekstrak maklumat jangka panjang rangka sauh tetap, supaya proses autoregresif dapat mengatasi perubahan dalam perkara dan butiran adegan semasa proses penjanaan.
Selepas menjana video panjang (80, 240, 600, 1200 atau lebih bingkai), mereka kemudiannya meningkatkan kualiti video melalui Peringkat Penapisan Penstriman. Proses ini menggunakan model video pendek Vison beresolusi tinggi (mis., MS-Vid2Vid-XL) secara autoregresif, ditambah dengan kaedah campuran stokastik yang baru dicadangkan untuk pemprosesan blok video yang lancar. Tambahan pula, langkah terakhir tidak memerlukan latihan tambahan, yang menjadikan kaedah ini lebih murah dari segi pengiraan.
Modul Perhatian Bersyarat
Pertama, model video Vincent (pendek) pra-latihan yang digunakan ditandakan sebagai Video-LDM. Modul perhatian (CAM) terdiri daripada pengekstrak ciri dan penyuntik ciri yang disuntik ke dalam Video-LDM UNet.
Pengekstrak ciri menggunakan pengekod imej bingkai demi bingkai, diikuti oleh lapisan pengekod yang sama yang digunakan oleh Video-LDM UNet sehingga lapisan tengah (dan dimulakan mengikut berat UNet).
Untuk suntikan ciri, reka bentuk di sini adalah untuk membenarkan setiap sambungan lompatan jarak jauh dalam UNet memfokuskan pada ciri sepadan yang dihasilkan oleh CAM melalui perhatian silang.
Modul Pemeliharaan Penampilan
Modul APM menyepadukan memori jangka panjang ke dalam proses penjanaan video dengan menggunakan maklumat daripada bingkai sauh tetap. Ini membantu mengekalkan ciri pemandangan dan objek semasa penjanaan tampalan video.
Untuk APM mengimbangi pemprosesan maklumat panduan yang diberikan oleh bingkai sauh dan arahan teks, pasukan membuat dua penambahbaikan: (1) Campurkan token imej CLIP bingkai sauh dengan token teks CLIP arahan teks ; (2) Berat diperkenalkan untuk setiap lapisan perhatian silang untuk menggunakan perhatian silang. . Proses ini dilakukan dengan terlebih dahulu menambahkan sejumlah besar hingar pada blok video input, dan kemudian menggunakan model penyebaran video Vincent ini untuk melakukan pemprosesan denoising.
Walau bagaimanapun, kaedah ini tidak mencukupi untuk menyelesaikan masalah ketidakpadanan peralihan antara blok video.
Untuk tujuan ini, penyelesaian pasukan adalah kaedah pencampuran rawak. Sila rujuk kertas asal untuk butiran khusus.Eksperimen
Dalam eksperimen, metrik penilaian yang digunakan oleh pasukan termasuk: Skor SCuts untuk menilai ketekalan temporal, ralat pintal sedar gerakan (MAWE) untuk menilai ralat gerakan dan twist, skor persamaan teks-imej CLIP (CLIP) dan skor estetik (AE) untuk menilai kualiti penjajaran teks.
Kajian Ablasi
Untuk menilai keberkesanan pelbagai komponen baharu, pasukan melakukan kajian ablasi pada 75 gesaan yang diambil secara rawak daripada set pengesahan.
CAM untuk pemprosesan bersyarat: CAM membantu model menjana video yang lebih konsisten, dengan skor SCuts 88% lebih rendah daripada model garis dasar lain dalam perbandingan.
Memori jangka panjang: Rajah 6 menunjukkan bahawa ingatan jangka panjang boleh membantu mengekalkan kestabilan ciri objek dan adegan semasa proses penjanaan autoregresif.
Pada metrik penilaian kuantitatif (skor pengenalan semula orang), APM mencapai peningkatan 20%.
Pencampuran rawak untuk peningkatan video: Berbanding dengan dua penanda aras yang lain, pencampuran rawak boleh membawa peningkatan kualiti yang ketara Ia juga boleh dilihat daripada Rajah 4: StreamingT2V boleh mendapatkan peralihan yang lebih lancar.
StreamingT2V berbanding model garis dasar
Penilaian kuantitatif: Seperti yang dapat dilihat daripada Jadual 8, penilaian kuantitatif pada set ujian menunjukkan bahawa StreamingT2V berprestasi terbaik dari segi peralihan blok video yang lancar dan konsistensi gerakan. Skor MAWE bagi kaedah baharu juga jauh lebih baik daripada semua kaedah lain - malah lebih 50% lebih rendah daripada SEINE kedua terbaik. Tingkah laku yang sama dilihat dalam skor SCuts. Selain itu, StreamingT2V hanya lebih rendah sedikit daripada SparseCtrl dari segi kualiti bingkai tunggal video yang dihasilkan. Ini menunjukkan bahawa kaedah baharu ini mampu menjana video panjang berkualiti tinggi dengan ketekalan temporal dan dinamik gerakan yang lebih baik daripada kaedah perbandingan lain. Penilaian kualitatif: Rajah di bawah menunjukkan perbandingan kesan StreamingT2V dengan kaedah lain Dapat dilihat bahawa kaedah baru dapat mengekalkan konsistensi yang lebih baik sambil memastikan kesan dinamik video. Untuk butiran penyelidikan lanjut, sila rujuk kertas asal.
Atas ialah kandungan terperinci StreamingT2V, penjana video panjang dua minit dan 1,200 bingkai, ada di sini, dan kod itu akan menjadi sumber terbuka. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Harga Bitcoin berkisar antara $ 20,000 hingga $ 30,000. 1. Harga Bitcoin telah berubah secara dramatik sejak tahun 2009, mencapai hampir $ 20,000 pada tahun 2017 dan hampir $ 60,000 pada tahun 2021. Harga dipengaruhi oleh faktor -faktor seperti permintaan pasaran, bekalan, dan persekitaran makroekonomi. 3. Dapatkan harga masa nyata melalui pertukaran, aplikasi mudah alih dan laman web. 4. Harga Bitcoin sangat tidak menentu, didorong oleh sentimen pasaran dan faktor luaran. 5. Ia mempunyai hubungan tertentu dengan pasaran kewangan tradisional dan dipengaruhi oleh pasaran saham global, kekuatan dolar AS, dan sebagainya. 6. Trend jangka panjang adalah yakin, tetapi risiko perlu dinilai dengan berhati-hati.

Sepuluh pertukaran cryptocurrency teratas di dunia pada tahun 2025 termasuk Binance, OKX, Gate.io, Coinbase, Kraken, Huobi, Bitfinex, Kucoin, Bittrex dan Poloniex, yang semuanya dikenali dengan jumlah dan keselamatan perdagangan mereka yang tinggi.

Sepuluh platform perdagangan cryptocurrency teratas di dunia termasuk Binance, OKX, Gate.io, Coinbase, Kraken, Huobi Global, Bitfinex, Bittrex, Kucoin dan Poloniex, yang semuanya menyediakan pelbagai kaedah perdagangan dan langkah -langkah keselamatan yang kuat.

Sepuluh pertukaran mata wang digital teratas seperti Binance, OKX, Gate.io telah meningkatkan sistem mereka, urus niaga yang pelbagai dan langkah -langkah keselamatan yang ketat.

Memebox 2.0 mentakrifkan semula pengurusan aset crypto melalui seni bina yang inovatif dan kejayaan prestasi. 1) Ia menyelesaikan tiga titik kesakitan utama: silo aset, kerosakan pendapatan dan paradoks keselamatan dan kemudahan. 2) Melalui hab aset pintar, pengurusan risiko dinamik dan enjin peningkatan pulangan, kelajuan pemindahan rantaian, kadar hasil purata dan kelajuan tindak balas insiden keselamatan diperbaiki. 3) Menyediakan pengguna dengan visualisasi aset, automasi dasar dan integrasi tadbir urus, merealisasikan pembinaan semula nilai pengguna. 4) Melalui kerjasama ekologi dan inovasi pematuhan, keberkesanan keseluruhan platform telah dipertingkatkan. 5) Pada masa akan datang, kolam insurans kontrak pintar, ramalan integrasi pasaran dan peruntukan aset yang didorong AI akan dilancarkan untuk terus memimpin pembangunan industri.

Saat ini disenaraikan di antara sepuluh mata wang mata wang maya yang teratas: 1. Binance, 2 Okx, 3. Gate.io, 4. Perpustakaan duit syiling, 5. Siren, 6. Huobi Global Station, 7. Bybit, 8. Kucoin, 9.

Platform perdagangan mata wang digital yang boleh dipercayai: 1. Okx, 2. Binance, 3. Coinbase, 4. Kraken, 5. Huobi, 6. Kucoin, 7.

Menggunakan perpustakaan Chrono di C membolehkan anda mengawal selang masa dan masa dengan lebih tepat. Mari kita meneroka pesona perpustakaan ini. Perpustakaan Chrono C adalah sebahagian daripada Perpustakaan Standard, yang menyediakan cara moden untuk menangani selang waktu dan masa. Bagi pengaturcara yang telah menderita dari masa. H dan CTime, Chrono tidak diragukan lagi. Ia bukan sahaja meningkatkan kebolehbacaan dan mengekalkan kod, tetapi juga memberikan ketepatan dan fleksibiliti yang lebih tinggi. Mari kita mulakan dengan asas -asas. Perpustakaan Chrono terutamanya termasuk komponen utama berikut: STD :: Chrono :: System_Clock: Mewakili jam sistem, yang digunakan untuk mendapatkan masa semasa. Std :: Chron
