Sun:不会关闭任何源代码 MySQL永远开源_MySQL
上周MySQL Conference and Expo会议上SUN曾表示要关闭部分Mysql源代码,此举立即激起了开源社区的愤怒。目前,SUN前CEO Marten Mickos出面澄清,MySQL永远都是开源软件。
该争议的中心在于报导说SUN计划关闭MySQL 6.0版本中的备份功能源代码,仅有付费的企业版用户才可以修改这部分代码。
Mickos澄清,SUN不会减少或关闭任何社区版MySQL的功能.无论社区版或是企业版的用户都可以拥有核心备份功能和备份API.但是针对付费的企业用户,SUN计划专门开发高级加载项功能,例如加密和压缩功能。
Mickos认为,这也就是之前误解的渊源,SUN不会关闭任何MySQL的源代码,MySQL基于GPL软件发布许可,并会继续受到GPL的保护.任何用户都可能通过API建立他自己的加载项或是修改其中的内容。

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Anotasi imej ialah proses mengaitkan label atau maklumat deskriptif dengan imej untuk memberi makna dan penjelasan yang lebih mendalam kepada kandungan imej. Proses ini penting untuk pembelajaran mesin, yang membantu melatih model penglihatan untuk mengenal pasti elemen individu dalam imej dengan lebih tepat. Dengan menambahkan anotasi pada imej, komputer boleh memahami semantik dan konteks di sebalik imej, dengan itu meningkatkan keupayaan untuk memahami dan menganalisis kandungan imej. Anotasi imej mempunyai pelbagai aplikasi, meliputi banyak bidang, seperti penglihatan komputer, pemprosesan bahasa semula jadi dan model penglihatan graf Ia mempunyai pelbagai aplikasi, seperti membantu kenderaan dalam mengenal pasti halangan di jalan raya, dan membantu dalam proses. pengesanan dan diagnosis penyakit melalui pengecaman imej perubatan. Artikel ini terutamanya mengesyorkan beberapa alat anotasi imej sumber terbuka dan percuma yang lebih baik. 1.Makesen

Anotasi teks ialah kerja label atau teg yang sepadan dengan kandungan tertentu dalam teks. Tujuan utamanya adalah untuk memberikan maklumat tambahan kepada teks untuk analisis dan pemprosesan yang lebih mendalam, terutamanya dalam bidang kecerdasan buatan. Anotasi teks adalah penting untuk tugas pembelajaran mesin yang diawasi dalam aplikasi kecerdasan buatan. Ia digunakan untuk melatih model AI untuk membantu memahami maklumat teks bahasa semula jadi dengan lebih tepat dan meningkatkan prestasi tugasan seperti klasifikasi teks, analisis sentimen dan terjemahan bahasa. Melalui anotasi teks, kami boleh mengajar model AI untuk mengenali entiti dalam teks, memahami konteks dan membuat ramalan yang tepat apabila data baharu yang serupa muncul. Artikel ini terutamanya mengesyorkan beberapa alat anotasi teks sumber terbuka yang lebih baik. 1.LabelStudiohttps://github.com/Hu

Untuk mengemas kini versi curl di bawah Linux, anda boleh mengikuti langkah di bawah: Semak versi curl semasa: Pertama, anda perlu menentukan versi curl yang dipasang dalam sistem semasa. Buka terminal dan laksanakan arahan berikut: curl --version Perintah ini akan memaparkan maklumat versi curl semasa. Sahkan versi curl tersedia: Sebelum mengemas kini curl, anda perlu mengesahkan versi terkini yang tersedia. Anda boleh melawati tapak web rasmi curl (curl.haxx.se) atau sumber perisian yang berkaitan untuk mencari versi terkini curl. Muat turun kod sumber curl: Menggunakan curl atau penyemak imbas, muat turun fail kod sumber untuk versi curl pilihan anda (biasanya .tar.gz atau .tar.bz2

Teknologi pengesanan dan pengecaman muka adalah teknologi yang agak matang dan digunakan secara meluas. Pada masa ini, bahasa aplikasi Internet yang paling banyak digunakan ialah JS Melaksanakan pengesanan muka dan pengecaman pada bahagian hadapan Web mempunyai kelebihan dan kekurangan berbanding dengan pengecaman muka bahagian belakang. Kelebihan termasuk mengurangkan interaksi rangkaian dan pengecaman masa nyata, yang sangat memendekkan masa menunggu pengguna dan meningkatkan pengalaman pengguna termasuk: terhad oleh saiz model, ketepatannya juga terhad. Bagaimana untuk menggunakan js untuk melaksanakan pengesanan muka di web? Untuk melaksanakan pengecaman muka di Web, anda perlu biasa dengan bahasa dan teknologi pengaturcaraan yang berkaitan, seperti JavaScript, HTML, CSS, WebRTC, dll. Pada masa yang sama, anda juga perlu menguasai visi komputer yang berkaitan dan teknologi kecerdasan buatan. Perlu diingat bahawa kerana reka bentuk bahagian Web

Izinkan saya memperkenalkan kepada anda projek sumber terbuka AIGC terkini-AnimagineXL3.1. Projek ini adalah lelaran terkini model teks-ke-imej bertema anime, yang bertujuan untuk menyediakan pengguna pengalaman penjanaan imej anime yang lebih optimum dan berkuasa. Dalam AnimagineXL3.1, pasukan pembangunan menumpukan pada mengoptimumkan beberapa aspek utama untuk memastikan model mencapai tahap prestasi dan kefungsian yang baharu. Pertama, mereka mengembangkan data latihan untuk memasukkan bukan sahaja data watak permainan daripada versi sebelumnya, tetapi juga data daripada banyak siri anime terkenal lain ke dalam set latihan. Langkah ini memperkayakan pangkalan pengetahuan model, membolehkannya memahami pelbagai gaya dan watak anime dengan lebih lengkap. AnimagineXL3.1 memperkenalkan set teg khas dan estetika baharu

SOTA baharu untuk keupayaan memahami dokumen multimodal! Pasukan Alibaba mPLUG mengeluarkan kerja sumber terbuka terkini mPLUG-DocOwl1.5, yang mencadangkan satu siri penyelesaian untuk menangani empat cabaran utama pengecaman teks imej resolusi tinggi, pemahaman struktur dokumen am, arahan mengikut dan pengenalan pengetahuan luaran. Tanpa berlengah lagi, mari kita lihat kesannya dahulu. Pengecaman satu klik dan penukaran carta dengan struktur kompleks ke dalam format Markdown: Carta gaya berbeza tersedia: Pengecaman dan kedudukan teks yang lebih terperinci juga boleh dikendalikan dengan mudah: Penjelasan terperinci tentang pemahaman dokumen juga boleh diberikan: Anda tahu, "Pemahaman Dokumen " pada masa ini Senario penting untuk pelaksanaan model bahasa yang besar. Terdapat banyak produk di pasaran untuk membantu pembacaan dokumen. Sesetengah daripada mereka menggunakan sistem OCR untuk pengecaman teks dan bekerjasama dengan LLM untuk pemprosesan teks.

FP8 dan ketepatan pengiraan titik terapung yang lebih rendah bukan lagi "paten" H100! Lao Huang mahu semua orang menggunakan INT8/INT4, dan pasukan Microsoft DeepSpeed memaksa diri mereka menjalankan FP6 pada A100 tanpa sokongan rasmi daripada Nvidia. Keputusan ujian menunjukkan bahawa kaedah baharu TC-FPx FP6 kuantisasi pada A100 adalah hampir atau kadangkala lebih pantas daripada INT4, dan mempunyai ketepatan yang lebih tinggi daripada yang terakhir. Selain itu, terdapat juga sokongan model besar hujung ke hujung, yang telah bersumberkan terbuka dan disepadukan ke dalam rangka kerja inferens pembelajaran mendalam seperti DeepSpeed. Keputusan ini juga mempunyai kesan serta-merta pada mempercepatkan model besar - di bawah rangka kerja ini, menggunakan satu kad untuk menjalankan Llama, daya pemprosesan adalah 2.65 kali lebih tinggi daripada dua kad. satu

Alamat kertas: https://arxiv.org/abs/2307.09283 Alamat kod: https://github.com/THU-MIG/RepViTRepViT berprestasi baik dalam seni bina ViT mudah alih dan menunjukkan kelebihan yang ketara. Seterusnya, kami meneroka sumbangan kajian ini. Disebutkan dalam artikel bahawa ViT ringan biasanya berprestasi lebih baik daripada CNN ringan pada tugas visual, terutamanya disebabkan oleh modul perhatian diri berbilang kepala (MSHA) mereka yang membolehkan model mempelajari perwakilan global. Walau bagaimanapun, perbezaan seni bina antara ViT ringan dan CNN ringan belum dikaji sepenuhnya. Dalam kajian ini, penulis menyepadukan ViT ringan ke dalam yang berkesan
